Answer:
13a² - 39a + 46
Step-by-step explanation:
To find g(a-2)+3g(2a), find each part using the function g(x)=x²-5x+8.
g(a-2) = (a-2)²-5(a-2)+8 = a² - 4a + 4-5a + 10+8 = a² - 9a + 22
3g(2a) = 3{(2a)²-5(2a)+8} = 3{ 4a² - 10a + 8} = 12a² - 30a + 24
Combine the values to find g(a-2)+3g(2a).
g(a-2)+3g(2a) = (a² - 9a + 22) + (12a² - 30a + 24) = 13a² - 39a + 46
The formula to find the area of a triangle is

If you have any more questions let me know!
To get the extrema, derive the function.
You get y' = 2x^-1/3 - 2.
Set this equal to zero, and you get x=0 as the location of a critical point.
Since you are on a closed interval [-1, 1], those points can also have an extrema.
Your min is right, but the max isn't at (1,1). At x=-1, you get y=5 (y = 3(-1)^2/3 -2(-1); (-1)^2/3 = 1, not -1).
Thus, the maximum is at (-1, 5).
5(3x-1)
(x-3)(x-2)
I don't know if you want working out or an explanation? Or if it's too late, sorry.
Answer:
The answer is 9/16.
Step-by-step explanation:
Using Indices Law,

So for this question :



