Answer:
is there more to the question?
<span>use De Moivre's Theorem:
⁵√[243(cos 260° + i sin 260°)] = [243(cos 260° + i sin 260°)]^(1/5)
= 243^(1/5) (cos (260 / 5)° + i sin (260 / 5)°)
= 3 (cos 52° + i sin 52°)
z1 = 3 (cos 52° + i sin 52°) ←← so that's the first root
there are 5 roots so the angle between each root is 360/5 = 72°
then the other four roots are:
z2 = 3 (cos (52 + 72)° + i sin (52+ 72)°) = 3 (cos 124° + i sin 124°)
z3 = 3 (cos (124 + 72)° + i sin (124 + 72)°) = 3 (cos 196° + i sin 196°)
z4 = 3 (cos (196 + 72)² + i sin (196 + 72)°) = 3 (cos 268° + i sin 268°)
z5 = 3 (cos (268 + 72)° + i sin (268 + 72)°) = 3 (cos 340° + i sin 340°) </span>
To find r, first write out the equation:

Next, multiply both sides by 2:

Now, subtract both sides by 4:

Divide both sides by 3:

The answer to this problem is
r = 2. Hope this helps and have a phenomenal day!
Answer:
you can try adding the adding angles up to 180
or if its graphed you can count the units
Step-by-step explanation:
and know that all four sides are congruent and diagonals are perpendicular
i tried :)