2Na (s) + Cl2 (g) = 2NaCl (s)
Here we have to draw the mechanism of the reduction reaction between benzaldehyde and sodium borodeuteride to form the corresponding alcohol.
The reducing agent sodium borodeuteride can reduce the aldehydes to its corresponding alcohol. The reaction mechanism is shown in the attached image.
The reaction mechanism can be explained as-
The sodium borodeuteride is highly ionic in nature thus it remains as Na⁺ and BD₄⁻ The deuterium atom of BD₄⁻ attack the carbonyl carbon atom and substitute one of its deuterium as shown in the figure.
One molecule of sodium borodeuteride can reduce four molecules of benzaldehyde. The polar solvent like alcohol donates the proton as shown in the mechanism.
The converted alcohol contains the deuterium atom at the -C center. Thus benzaldehyde is converted to deuteroted benzyl alcohol.
Answer:
PART A 1st order in A and 0th order in B
Part B The reaction rate increases
Explanation:
<u>PART A
</u>
The rate law of the arbitrary chemical reaction is given by
![-r_A=k\times\left[A\right]^\alpha\times\left[B\right]^\beta\bigm](https://tex.z-dn.net/?f=-r_A%3Dk%5Ctimes%5Cleft%5BA%5Cright%5D%5E%5Calpha%5Ctimes%5Cleft%5BB%5Cright%5D%5E%5Cbeta%5Cbigm)
Replacing for the data
Expression 1 
Expression 2 
Expression 3 
Making the quotient between the fist two expressions

Then the expression for 

Doing the same between the expressions 1 and 3

Then

This means that the reaction is 1st order respect to A and 0th order respect to B
.
<u>PART B
</u>
By the molecular kinetics theory, if an increment in the temperature occurs, the molecules will have greater kinetic energy and, consequently, will move faster. Thus, the possibility of colliding with another molecule increases. These collisions are necessary for the reaction. Therefore, an increase in temperature necessarily produces an increase in the reaction rate.
Rare earth metals are a group of 17 elements - lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, yttrium - that appear in low concentrations in the ground