Answer:
-0.85KJ
Explanation:
Given N2(g) + H2(g) <--->2NH3(g)
Kp =[ P(NH3)]²/[P(H2)]³[P(N2)]
Where P is the pressure of the gas
P(H2)b= P(N2) = 125atm
P(NH3) = 200atm
Kp = 2²/(125)³(125)
Kp = 2.048 ×10^-6
∆G = -RTlnKp
R =0.008314 J/Kmol
T = 25 +273/= 298k
= 8.314 ×10^-3 × 298 × ln(2.048 ×10^-6)
= -0.008314 × 298 × (-13.099)
= 32.45KJ
∆G = ∆G° + RTlnKp
∆G = -33.3 + 32.45
∆G = -0.85KJ or -850J
Answer:
Solar panels capture the sun's rays and convert it into heat and electricity, which is used to heat and cool your home, while geothermal solutions use the constant core temperature of the Earth to warm and cool a property.
Explanation:
Mark as brainliest
Answer:
The specific heat capacity of silver is 0.24 j/g.°C.
Explanation:
Given data:
Mass of sample = 55.00 g
increase of temperature ΔT= 15.0 °C
Heat absorbed = 193.9 J
Specific heat capacity of silver = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance.
ΔT = change in temperature
Now we will put the values in formula.
193.9 J = 55.00 g × c ×15.0 °C
193.9 J = 825 g.°C × c
c = 193.9 J / 825 g.°C
c= 0.24 /g.°C
The specific heat capacity of silver is 0.24 j/g.°C.
Answer:
1.81 x
molecules H2
Explanation:
Use Avogadro's number:
3 moles H2 x 6.022 x
molecules= 1.81 x
molecules H2