<em>1</em><em>5</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>a</em><em> </em><em>prime</em><em> </em><em>factor</em><em> </em><em>as</em><em> </em><em>it</em><em> </em><em>is</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>1</em><em>,</em><em>3</em><em>,</em><em>5</em><em> </em><em>and</em><em> </em><em>1</em><em>5</em><em>.</em>
<em>Additional</em><em> </em><em>information</em><em>:</em>
<em>Prime</em><em> </em><em>numbers</em><em> </em><em>are</em><em> </em><em>those</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>can</em><em> </em><em>only</em><em> </em><em>be</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>itself</em><em> </em><em>.</em><em>for</em><em> </em><em>instance</em><em>:</em><em>1</em><em>,</em><em>2</em><em>,</em><em>3</em><em>,</em><em>5</em><em>,</em><em>7</em><em> </em><em>,</em><em>1</em><em>1</em><em>,</em><em>1</em><em>3</em><em> </em><em>etc</em><em>.</em>
<em>Composite</em><em> </em><em>number</em><em> </em><em>s</em><em> </em><em>are</em><em> </em><em>those</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>also</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>other</em><em> </em><em>numbers</em><em>,</em><em>For</em><em> </em><em>instance</em><em>:</em><em> </em><em>4</em><em>,</em><em>6</em><em>,</em><em>8</em><em>,</em><em>1</em><em>0</em><em> </em><em>etc</em>
<em>Hope</em><em> </em><em>it </em><em>helps</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
100 red bricks
Step-by-step explanation:
Let's say red bricks is equal to 5x
Gray bricks is equal to 2x
We have an equation
2x + 5x = 140
= 7x = 140
Divide through by 7 to get the value of x
X = 140/7
X = 20
Red bricks = 5(x)
= 5(20)
= 100
Gray bricks = 2(x)
= 2(20)
= 40
Therefore in conclusion the number of red bricks is 100.
72/6 = 12
The awnser is x = 12