Answer:
5.5
Step-by-step explanation:
Answer:
159
Step-by-step explanation:
k (9) = (2 *
) - 3
= (2 * 81) - 3
= 162 - 3
= 159
<h3><u>Answer</u> :</h3>
![\bigstar\:\boxed{\bf{\purple{x^{\frac{m}{n}}}=\orange{(\sqrt[n]{x})^m}}}](https://tex.z-dn.net/?f=%5Cbigstar%5C%3A%5Cboxed%7B%5Cbf%7B%5Cpurple%7Bx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%7D%3D%5Corange%7B%28%5Csqrt%5Bn%5D%7Bx%7D%29%5Em%7D%7D%7D)
Let's solve !

![:\implies\sf\:(\sqrt[2]{25})^3](https://tex.z-dn.net/?f=%3A%5Cimplies%5Csf%5C%3A%28%5Csqrt%5B2%5D%7B25%7D%29%5E3)


<u>Hence, Oprion-D is correct</u> !
The regular hexagon has both reflection symmetry and rotation symmetry.
Reflection symmetry is present when a figure has one or more lines of symmetry. A regular hexagon has 6 lines of symmetry. It has a 6-fold rotation axis.
http://prntscr.com/96ow2n
Rotation symmetry is present when a figure can be rotated (less than 360°) and still look the same as before it was rotated. The center of rotation is a point a figure is rotated around such that the rotation symmetry holds. A regular hexagon can be rotated 6 times at an angle of 60°
http://prntscr.com/96oxjx
(not sure if this is right but)
x (to the 2nd power) + y (to the 2nd power) = cos (90) (to the 2nd power)