Answer:
5 times bigger
Step-by-step explanation:
(6-4) = 2
(6-4) x 5 = 10
Step 1. Divide both side by 16
100/16 = 6t - 13
Step 2. Dimplify 200/16 to 25/2
25/2 = 6t - 13
Step 3. Add 13 to both sides
25/2 + 13 = 6t
Step 4. Simplify 25/2 + 13 to 51/2
51/2 = 6t
Step 5. Divide both sides by 6
51/2/6 = t
Step 6. Simplify 51/2/6 to 51/2 * 6
51/2 * 6 = t
Step 7. Simplify 2 * 6 to 12
51/12 = t
Step 8. Simplify 51/12 to 17/4
17/4 = t
Step 9. Switch sides
t = 17/4
Answer:
f = 
Step-by-step explanation:
1. 4(4f - 9) = -(2-f) distribute the negative
2. 4(4f - 9) = -2 + f Distribute the 4
3. 16f - 9 = -2 + f Subtract f on both sides
4. 15f - 9 = -2 Add 9 on both sides
5. 15f = 7 Divide both equations by 15
6.
f = 
Annually The amount after 10 years = $ 7247.295
quarterly compound after 10 years = $7393.5
Continuously interest =$7,419
Given:
P = the principal amount
r = rate of interest
t = time in years
n = number of times the amount is compounding.
Principal = $4500
time= 10 year
Rate = 5%
To find: The amount after 10 years.
The principal amount is, P = $4500
The rate of interest is, r = 5% =5/100 = 0.05.
The time in years is, t = 10.
Using the quarterly compound interest formula:
A = P (1 + r / 4)4 t
A= 4500(1+.05/4)40
A= 4500(4.05/4)40
A= 4500(1.643)
Answer: The amount after 10 years = $7393.5
Using the Annually compound interest formula:
A = P (1 + r / 100) t
A= 4500(1+5/100)10
A= 4500(105/100)10
Answer: The amount after 10 years = $ 7247.295
Using the Continuously compound interest formula:
e stands for Napier’s number, which is approximately 2.7183

A= $2,919
Answer: The amount after 10 years = $4500+$2,919=$7,419
More details :brainly.com/question/13307568
#SPJ9
Answer:

Step-by-step explanation:
Method 1: Using a calculator <em>instead</em> of the unit circle
The unit circle gives coordinates pairs for the <em>cos</em> and <em>sin</em> values at a certain angle. Therefore, if an angle is given, use a calculator to evaluate the functions at cos(angle) and sin(angle).
Method 2: Using the unit circle
Use the unit circle to locate the angle measure of 150° (or 5π/6 radians) and use the coordinate pair listed by the value (see attachment).
This coordinate pair is (-√3/2, 1/2).