Part (a)
Locate x = -1 on the x axis. Draw a vertical line through this x value until you reach the f(x) curve. Then move horizontally until you reach the y axis. You should arrive at y = 4. Check out the diagram below to see what I mean.
Since f(-1) = 4, this means we can then say
g( f(-1) ) = g( 4 ) = 4
To evaluate g(4), we'll follow the same idea as what we did with f(x). However, we'll start at x = 4 and draw a vertical line until we reach the g(x) curve this time.
<h3>
Answer: 4</h3>
==========================================================
Part (b)
We use the same idea as part (a)
f(-2) = 5
g( f(-2) ) = g(5) = 6
<h3>
Answer: 6</h3>
==========================================================
Part (c)
Same idea as the last two parts. We start on the inside and work toward the outside. Keep in mind that g(x) is now the inner function for this part and for part (d) as well.
g(1) = -2
f( g(1) ) = f(-2) = 5
<h3>
Answer: 5</h3>
==========================================================
Part (d)
Same idea as part (c)
g(2) = 0
f( g(2) ) = f( 0 ) = 3
<h3>
Answer: 3</h3>
The answer is C
By the way, that expression means "n choose k". Hope I helped!
For this problem, let x be the number of children and y for adults. Formulate the equations: 1st equation, x + y = 3,200 and 2nd equation 5x + 9y = 24,000. Re-arrange 1st equation into x = 3200 - y. Then, substitute into 2nd equation, 5(3,200-y) + 9y = 24,000. Then, solve for y. The 16,000 - 5y + 9y = 24000. Final answer is, y = 2000 adults went to watch the movie.
Answer:
Answer: 12
Step-by-step explanation:
Answer:
12
Step-by-step explanation:
This thing to know about this question is that angle 1 and angle 3 are actually the same.
When two lines intersect, the opposite angles such as that shown in 1 and 3 are equal to each other.
So what you can do is set angle 1 and 3 equal to each other like so:
5x+10 = 70
Then solve for x
5x+10 = 70
5x = 60
x = 12