a = interest rate of first CD
b = interest rate of second CD
and again, let's say the principal invested in each is $X.
![\bf a-b=3\qquad \implies \qquad \boxed{b}=3+a~\hfill \begin{cases} \left( \frac{a}{100} \right)X=240\\\\ \left( \frac{b}{100} \right)X=360 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \left( \cfrac{a}{100} \right)X=240\implies X=\cfrac{240}{~~\frac{a}{100}~~}\implies X=\cfrac{24000}{a} \\\\\\ \left( \cfrac{b}{100} \right)X=360\implies X=\cfrac{360}{~~\frac{b}{100}~~}\implies X=\cfrac{36000}{b} \\\\[-0.35em] ~\dotfill\\\\](https://tex.z-dn.net/?f=%5Cbf%20a-b%3D3%5Cqquad%20%5Cimplies%20%5Cqquad%20%5Cboxed%7Bb%7D%3D3%2Ba~%5Chfill%20%5Cbegin%7Bcases%7D%20%5Cleft%28%20%5Cfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5C%5C%5C%5C%20%5Cleft%28%20%5Cfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5Cimplies%20X%3D%5Ccfrac%7B240%7D%7B~~%5Cfrac%7Ba%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B24000%7D%7Ba%7D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%5Cimplies%20X%3D%5Ccfrac%7B360%7D%7B~~%5Cfrac%7Bb%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B36000%7D%7Bb%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C)


Answer:
14 rides
Step-by-step explanation:
16 = 0.79x + 4.5
11.5 = 0.79x
x = 14.55 or 14
rounding down because it can't go over $16.
0.79(14) + 4.5 = $15.56
Answer:
No
Step-by-step explanation:
No, because 8x8^58x85 only takes the 8 that it is up against to the fifth power, but (8x8)^5(8x8)5 takes the whole expression to the fifth power.
Answer:
6.5
Step-by-step explanation:30-4=26
26 divided by 4 equals 6.5
Answer:
1. ![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. ![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. ![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. ![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)
Step-by-step explanation:
Recall that
![(\sqrt[n]{x})^{m} = (x^{\frac{m}{n}})](https://tex.z-dn.net/?f=%28%5Csqrt%5Bn%5D%7Bx%7D%29%5E%7Bm%7D%20%3D%20%20%28x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%29)
Where
is called radicand and n is called index
1. Root(5, (m + 2) ^ 3)
In this case,
n is 5
m is 3
x = (m + 2)
![(\sqrt[5]{(m+2)})^{3} = (m+2)^{\frac{3}{5}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7B%28m%2B2%29%7D%29%5E%7B3%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D)
2. Root(3, (m + 2) ^ 5)
In this case,
n is 3
m is 5
x = (m + 2)
![(\sqrt[3]{(m+2)})^{5} = (m+2)^{\frac{5}{3}}](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B%28m%2B2%29%7D%29%5E%7B5%7D%20%3D%20%20%28m%2B2%29%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D)
3. Root(5, m ^ 3) + 2
In this case,
n is 5
m is 3
x = m
![\sqrt[5]{(m)}^{3}+2 = m^{\frac{3}{5}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%28m%29%7D%5E%7B3%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B5%7D%7D%2B2)
4. Root(3, m ^ 5) + 2
In this case,
n is 3
m is 5
x = m
![\sqrt[3]{(m)}^{5}+2 = m^{\frac{5}{3}}+2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%28m%29%7D%5E%7B5%7D%2B2%20%3D%20%20m%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%2B2)