Answer:
In biology, osmosis is defined as the net movement of water molecules through a semipermeable membrane (e.g. cell membrane) from an area of higher to an area of lower water potential. Other definitions of osmosis are as follows:
The process of a solvent diffusing through a semipermeable membrane from an area of low solute concentration to an area of high solute concentration
The tendency of water to flow from a hypotonic solution (low concentration of dissolved substances) to hypertonic solution (higher concentration of dissolved substances) across a semipermeable membrane
In chemistry, osmosis is defined similarly. It is the passage of a pure solvent from a solution of lesser to one of greater concentration of solutes when the two solutions are separated by a membrane that selectively prevents the passage of solute molecules while allows the solvent molecules to pass through.
For more information see https://www.biologyonline.com/dictionary/osmosis
The Chesapeake bay is an estuary in United States. The presence of nitrogen and phosphorus in the estuary can cause harm to the aquatic species present there.
The main source of nitrogen in the Chesapeake bay is the agricultural runoff. The pesticides and the herbicides used in the agriculture may come along the runoff and get mixed with large rivers and water bodies. The nitrogen from agricultural runoff accounts approximately 40% of the total sources of nitrogen.
Hence, the correct answer is agricultural runoff.
Answer:
(a) Microfilaments
(b) Microtubules
(c) Microtubules
(d) Microfilaments
(e) Intermediate filaments
(f) Microfilaments, intermediate filaments, microtubules
(g) Microfilaments, microtubules
(h) Microfilaments, intermediate filaments, microtubules
(i) Microtubules, microfilaments
(j) Microtubules
Explanation:
Microtubules (MTs) are dimers of the protein tubulin (alpha- and beta-tubulin subunits) and they are major components of the cytoskeleton. MTs play diverse cellular roles including, mechanical support (cytoskeleton), transport, motility, chromosome segregation, etc. Microfilaments (MFs) are protein filaments that also form part of the cytoskeleton in eukaryotic cells. MFs consist of G-actin monomers assembled in linear actin polymers, and their functions include mechanical support, cytokinesis, changes in cell shape, amoeboid movement, endocytosis and exocytosis, etc. MFs associate with the protein myosin to generate muscle contractions. Actin filaments/MTs assembly from monomeric actin/tubulin is caused due to energy expenditure, where ATP/GTP bound to actin/tubulin is hydrolyzed during polymerization. Finally, intermediate filaments (IFs) are a type of cytoskeletal element composed of a heterogeneous group of structural elements, and they are not found in all eukaryotes. The primary function of the IFs is to contribute to the mechanical support for the plasma membrane where these filaments come into contact with other cells and/or with the extracellular matrix. The IFs are not directly involved in cell movement. All 3 types of cytoskeletal elements (microfilaments, intermediate filaments, microtubules) can be visualized by fluorescence microscopy when cells express chimeric MT/IF/MF.–GFP fusion proteins.
4 pumps blood throughout the body