1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valkas [14]
4 years ago
7

1) Solve by using the perfect squares method. x2 + 8x + 16 = 0

Mathematics
1 answer:
Bond [772]4 years ago
5 0
1)
x^2+8x+16=0 \\
(x+4)^2=0 \\
x+4=0 \\
\boxed{x=-4}

2)
x^2-5x-6=0 \\
x^2-6x+x-6=0 \\
x(x-6)+1(x-6)=0 \\
(x+1)(x-6)=0 \\
x+1=0 \ \lor \ x-6=0 \\
x=-1 \ \lor \ x=6 \\
\boxed{x=-1 \hbox{ or } x=6}

3)
\hbox{a perfect square:} \\ (x-a)^2=x^2-2xa+a^2 \\ \\ 2xa=20x \\ a=\frac{20x}{2x} \\ a=10 \\ \\ a^2=10^2=100 \\ \\ \hbox{the expression:} \\ x^2-20x+100 \\ \\ \boxed{\hbox{100 should be added to the expression}}

4)
x^2+8x-8=0 \\ \\
a=1 \\ b=8 \\ c=-8 \\ \Delta=b^2-4ac=8^2-4 \times 1 \times (-8)=64+32=96 \\
\sqrt{\Delta}=\sqrt{96}=\sqrt{16 \times6}=4\sqrt{6} \\ \\
x=\frac{-b \pm \sqrt{\Delta}}{2a}=\frac{-8 \pm 4\sqrt{6}}{2 \times 1}=\frac{2(-4 \pm 2\sqrt{6})}{2}=-4 \pm 2\sqrt{6} \\
\boxed{x=-4-2\sqrt{6} \hbox{ or } x=-4+2\sqrt{6}}

5)
2x^2+12x=0 \\
2x(x+6)=0 \\
2x=0 \ \lor \ x+6=0 \\
x=0 \ \lor \ x=-6 \\
\boxed{x=-6 \hbox{ or } x=0}

6)
2x^2-2x-1=0 \\ \\
a=2 \\ b=-2 \\ c=-1 \\ \Delta=b^2-4ac=(-2)^2-4 \times 2 \times (-1)=4+8=12 \\
\sqrt{\Delta}=\sqrt{12}=\sqrt{4 \times 3}=2\sqrt{3} \\ \\
x=\frac{-b \pm \sqrt{\Delta}}{2a}=\frac{-(-2) \pm 2\sqrt{3}}{2 \times 2}=\frac{2 \pm 2\sqrt{3}}{2 \times 2}=\frac{2(1 \pm \sqrt{3})}{2 \times 2}=\frac{1 \pm \sqrt{3}}{2} \\
\boxed{x=\frac{1-\sqrt{3}}{2} \hbox{ or } x=\frac{1+\sqrt{3}}{2}}

7)
x^2-x+2=0 \\ \\
a=1 \\ b=-1 \\ c=2 \\
\Delta=b^2-4ac=(-1)^2-4 \times 1 \times 2=1-8=-7 \\ \\
\boxed{\hbox{the discriminant } \Delta=-7}

8)
3x^2-6x+1=0 \\ \\
a=3 \\ b=-6 \\ c=1 \\ \Delta=b^2-4ac=(-6)^2-4 \times 3 \times 1=36-12=24 \\ \\
\boxed{\hbox{the discriminant } \Delta=24} \\ \\
\hbox{if } \Delta\ \textless \ 0 \hbox{ then there are no real roots} \\
\hbox{if } \Delta=0 \hbox{ then there's one real root} \\
\hbox{if } \Delta\ \textgreater \ 0 \hbox{ then there are two real roots} \\ \\
\Delta=24\ \textgreater \ 0 \\
\boxed{\hbox{the equation has two real roots}}

9)
y=2x^2+x-3 \\ \\ a=2 \\ b=1 \\ c=-3 \\ \Delta=b^2-4ac=1^2-4 \times 2 \times (-3)=1+24=25 \\ \\ \hbox{the function has two zeros} \\ \boxed{\hbox{the parabola has 2 points in common with the x-axis}} \\ \\ a\ \textgreater \ 0 \hbox{ so the parabola ope} \hbox{ns upwards} \\ \boxed{\hbox{the vertex lies below the x-axis}}

10)
y=x^2-12x+12 \\ \\
a=1 \\ b=-12 \\ c=12 \\ \Delta=b^2-4ac=(-12)^2-4 \times 1 \times 12=144-48=96 \\ \\ \hbox{the function has two zeros} \\ \boxed{\hbox{the parabola has 2 points in common with the x-axis}} \\ \\ a\ \textgreater \ 0 \hbox{ so the parabola ope} \hbox{ns upwards} \\ \boxed{\hbox{the vertex lies below the x-axis}}
You might be interested in
Multiply the polynomial x (3x-1)(2x+5) also what is the degree of the polynomial
Readme [11.4K]

Answer:

Result after multiplication of polynomial is: 6x^3+13x^2-5x

Degree of polynomial = 3

Step-by-step explanation:

The given polynomials are:

x(3x-1)(2x+5)

In order to multiply the given polynomials we have to work step by step. First of all the polynomials in the bracket will be multiplied and then their result will be multiplied with x.

So, multiplying the polynomials in round brackets first

=x(3x-1)(2x+5)\\= x\{3x(2x+5)-1(2x+5)\}\\=x\{6x^2+15x-2x-5\}\\=x(6x^2+13x-5)

Now multiplying with x

= 6x^3+13x^2-5x

Degree of a polynomial is the highest exponent of variable in the polynomial.

In the acquired result, the highest exponent of x is 3 so the degree is 3.

Hence,

Result after multiplication of polynomial is: 6x^3+13x^2-5x

Degree of polynomial = 3

3 0
3 years ago
Show that ( 1 +i )2 = 2i
zheka24 [161]

Given:

The statement is

(1+i)^2=2i

To prove:

The given statement (1+i)^2=2i.

Solution:

We have,

(1+i)^2=2i

Taking LHS, we get

LHS=(1+i)^2

LHS=(1)^2+2(1)(i)+(i)^2         [\because (a+b)^2=a^2+2ab+b^2]

LHS=1+2i+(-1)         [\because i^2=-1]

On further simplification, we get

LHS=1+2i-1

LHS=2i

LHS=RHS

Hence proved.

6 0
3 years ago
Which of the following represents a geometric series <br> 2+6+18<br> 2,6,10<br> 2+6+10+<br> 2,6,18
quester [9]

good morning,

Answer:

2,6,18

Step-by-step explanation:

6/2=3 and 18/6=3 then 2,6,18 represent a geometric series.

6/2=3 and 10/6≠3 then 2,6,10 doesn’t represent a Géométric series.

:)

3 0
3 years ago
A chemist pumps hydrogen gas (H2) from a tank
son4ous [18]

Answer:

if it is a multiple choice question

the answer is 1.47 mol H2

Step-by-step explanation:

4 0
4 years ago
sam wants to cut a 57'' piece of wire into pieces 3/4 long. how many pieces how many pieces will he be able to cut
NeTakaya
This is a division problem involving fractions.
57 / (3/4)
57 * (4/3) =
128/3 = 76 pieces of wire
8 0
3 years ago
Other questions:
  • Your clothing store is open seven days a week from 9 am to 9 pm you are the manager of three employees each of whom want to work
    12·1 answer
  • Find the area of the shaded sector of circle O. The radius is 6 inches and the central angle is 100°. Express answer to the near
    10·1 answer
  • Hello once more, i need help
    10·1 answer
  • find the area and perimeter of each figure and give your answers as a completely simplified exact value in terms of π (no approx
    10·1 answer
  • Solve for X and Y with substitution
    15·1 answer
  • What are complex numbers?
    7·2 answers
  • If f(x) varies directly with x2, and f(x) = 96 when x = 4, find the value of f(6).
    8·1 answer
  • I found some of mmy cousins old work
    10·2 answers
  • The equation of line k is y = -6/7 x + 10. Line m is perpendicular to line k and passes through (-3, -5). What is the equation o
    8·2 answers
  • Helppppp plsssssss is due at 11:59
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!