Answer:
<em>B. The graph of g is the graph of f shifted 2 units down</em>
Step-by-step explanation:
<u>Graph of Functions</u>
We have two functions:
f(x)=3^x
g(x)=3^x-2
Since g(x)=f(x)-2 it will be represented as an identical graph as that for f(x), but vertically displaced 2 units down. Let's check it by plugging some points
f(0)=3^0=1
g(0)=3^0-2=-1
f(1)=3^1=3
g(1)=3^1-2=1
f(3)=3^3=27
g(3)=3^3-2=25
We can notice the values of g(x) are always 2 units below f(x), thus the correct answer is
B. The graph of g is the graph of f shifted 2 units down
Answer:
Step-by-step explanation:
Write in y = mx + b form
here, b ----> y intercept
2y - 2x = 8
2y = 2x + 8 {Divide the equation by 2}

y = x + 4
y-intercept = 4
Answer:
2
<h2>don't forget to follow me</h2>
Answer:

Step-by-step explanation:
To prove the given identity, we solve the left hand side and right hand side expressions and show that they are equal.
So we get
