Answer:
<em>The prediction interval provides an interval estimation for a particular value of y while the confidence interval does it for the expected value of y. </em>
Step-by-step explanation:
<em>A</em><em>. the prediction interval is narrower than the confidence interval.</em>
the prediction interval is always wider than the confidence interval.
<em>B</em><em>. the prediction interval provides an interval estimation for the expected value of y while the confidence interval does it for a particular value of y.</em>
False
<em>C</em><em>. the prediction interval provides an interval estimation for a particular value of y while the confidence interval does it for the expected value of y. </em>
<em>True</em>
<em>D.</em><em> the confidence interval is wider than the prediction interval.</em>
the prediction interval is wider
Tan(12) = 40/d
d = 40/tan(12)
d = 188.19m
Answer:
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x + C.</em></u>
Step-by-step explanation:
<u><em>First step we aplicate distributive property to the function.</em></u>
<u><em>5*(x+a)*(x+b)= 5*[
+x*b+a*x+a*b]</em></u>
<u><em>5*[
+x*(b+a)+a*b]= f(x), where a, b are constant and a≠b</em></u>
<u><em>integrating we find ⇒∫f(x)*dx= F(x) + C, where C= integration´s constant</em></u>
<u><em>∫^5*[
+x*(a+b)+a*b]*dx, apply integral´s property</em></u>
<u><em>5*[∫
dx+∫(a*b)*x*dx + ∫a*b*dx], resolving the integrals </em></u>
<u><em>5*[
+ (a*b)*
+ a*b*x</em></u>
<u><em>Finally we can write the function F(x)</em></u>
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x ]+ C.</em></u>
Step-by-step explanation:
1 Find common denominator (lower numbers)
2 add numerators(top numbers)
3 put the numerator over the denominator
ex 3/4+2/8
3x2=6,4x2=8
3/4=6/8
6/8+2/8=8/8 or 1