1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
5

The height of a tree at time t is given by a twice-differentiable function H, where H(t) is measured in meters and t is measured

in years. Selected values of H(t) are given in the table above.
(a) Use the data in the table to estimate H'(6). Using correct units. interpret the meaning of H'(6) in the context of the problem.

(b) Explain why there must be at least one time t, for 2 < t < 10, such that H'(t) = 2.

(c) Use a trapezoidal sum with the four subintervals indicated by the data in the table to approximate the average height of the tree over the time interval 2 ≤ t ≤ 10.

(d) The height of the tree, in meters, can also be modeled by the function G, given by
G(x) = 100x/(1+x), where x is the diameter of the base of the tree, in meters. When the tree is 50 meters tall, the diameter of the base of the tree is increasing at a rate of 0.03 meter per year. According to this model, what is the rate of change of the height of the tree with respect to time, in meters per year, at the time when the tree is 50 meters tall?

(This was on the no-calculator section of the recently-released AP Calculus AB 2018 exam so I appreciate it if you tried to limit calculator usage)

Mathematics
2 answers:
NeX [460]3 years ago
6 0
(a)

\displaystyle&#10;H'(6) \approx \frac{H(7)-H(5)}{7 -5} = \frac{5}{2}\text{ meters per year}

____________

(b)

Since function H is differentiable, it is a continuous function. The Mean Value Theorem guarantees that there is a time t in the interval 3<t<5 such that

\displaystyle H'(t) = \frac{H(5)-H(3)}{5-3} = \frac{6-2}{2} = 2

Since 3<t<5 is contained inside  2<t<10, there there must be at least one t in the interval <span>2<t<10 such that H'(t) = 2.
</span>
<span>____________

(c)

\displaystyle H_{avg} = \frac{1}{10-2} \int_2^{10} H(t)\, dt

where

\int_2^{10} H(t)\, dt \\ \\&#10; \approx \frac{1}{2}(1.5+2)(3-2) + \frac{1}{2}(2 + 6)(5-3) \\ \\ \qquad\qquad {} + \frac{1}{2}(6 + 11)(7-5) + \frac{1}{2}(11 + 15)(10-7) \\ \\&#10;= \frac{263}{4}

thus

\displaystyle H_{avg} \approx \frac{1}{8} \left( \frac{263}{4} \right) = \frac{263}{32}\text{ meters}

____________

(d)

When the tree is 50 minutes tall, the tree has a diameter x. This x value is

\displaystyle 50 = \frac{100x}{(1+x)} \implies 50(1+x) = 100x \implies x = 1

Since the height is G, then by implicit differentiation

\displaystyle\frac{dG}{dt} = \frac{(1+x)(100 \tfrac{dx}{dt}) - 100x \tfrac{dx}{dt}}{(1+x)^2} \\ \\&#10;\left.\frac{dG}{dt}\right|_{G = 50} = \frac{(1+1)(100 \cdot 0.03) - 100(1)(0.03)}{(1+1)^2} \\  \\ &#10;= \frac{3}{4}\text{ meters per year}</span>
il63 [147K]3 years ago
4 0
A) Use the mean value theorem.

H'(6)\approx\dfrac{H(7)-H(5)}{7-5}=\dfrac{11-6}2=\dfrac52\text{ meters/year}


Since H(t) gives the tree's height in meters at time t, the value of H'(6) informs us how quickly the tree is growing exactly after 6 years have passed. (i.e. the instantaneous rate of change of the tree's height)


b) We use the mean value theorem again. Observe that H(5)-H(3)=6-2=4, and that 5-3=2. By the MVT, there must be some 3 such that


H'(t)=\dfrac42=2


c) The average height of the tree is given by the integral


\displaystyle\frac1{10-2}\int_2^{10}H(t)\,\mathrm dt


If you can remember the formula for the area of a trapezoid, then this is pretty easy to compute. With five data points, you end up with four trapezoids constructed by the four adjacent subintervals. The "bases" are given by the values of H(t) at each pair of endpoints, and the "heights" are the lengths of the subintervals. For the integral itself, we get


\dfrac{2+1.5}2(3-2)+\dfrac{6+2}2(5-3)+\dfrac{11+6}2(7-5)+\dfrac{15+11}2(10-7)=\dfrac{263}4

So the average height of the tree (in meters) is


\displaystyle\frac1{10-2}\int_2^{10}H(t)\,\mathrm dt\approx\frac{263}{32}


d) When G=50, the diameter of the base can be determined to be


50=\dfrac{100x}{1+x}\implies x=1


We're told that \dfrac{\mathrm dx}{\mathrm dt}=0.03. G is a function of x which is in turn a function of t, so when we differentiate, we use the chain rule:


\dfrac{\mathrm dG}{\mathrm dt}=\dfrac{\mathrm dG}{\mathrm dx}\cdot\dfrac{\mathrm dx}{\mathrm dt}


\implies\dfrac{\mathrm dG}{\mathrm dt}=\dfrac{100}{(1+x)^2}\cdot\dfrac3{100}=\dfrac3{(1+x)^2}


When the height of the tree is 50 meters, we found the diameter to be 1 meter, so at this point


\dfrac{\mathrm dG}{\mathrm dt}=\dfrac34\text{ meters/year}
You might be interested in
A theatre holds 1200 people when full.If it is 80% full,how many people are present?
Zina [86]
960 because 0.8(80%) • 1200 = 960
3 0
3 years ago
Read 2 more answers
0 = x^3-8<br> Help me with this problem
ser-zykov [4K]

Answer:

6

Step-by-step explanation:

7 0
3 years ago
bought 2 pounds of apples at the supermarket. how many kilograms of apples did she buy?? Please Help!!!
MrRissso [65]
2 pounds = 0.907 kilogram according to Google
3 0
3 years ago
What is the cost of 4 pairs of Nikes if each pair is $365.68 along with 120 peaches that each cost $9.00. After he lost 3 pairs
Andreas93 [3]

One cost of a pair of Nike's is $365.68 so to find the cost of 4 pairs, we multiply 365.68 by 4 which gets us $1462.72

And he is fat

3 0
3 years ago
Read 2 more answers
Al factorizar el trinomio cuadrado perfecto, obtenemos el siguiente resultado: (que no se como resolver) xd algun pro que sepa r
PolarNik [594]

Answer:

\displaystyle \frac{100}{81}m^8p^{12}q^{16}z^2-\frac{20}{63}m^5p^7q^8z^5+ \frac{1}{49}m^2p^2z^8=\left(\frac{10}{9}m^4p^{6}q^{8}z-\frac{1}{7}mpz^4\right)^2

Step-by-step explanation:

<u>Trinomio Cuadrado Perfecto</u>

El producto notable llamado cuadrado de un binomio se expresa como:

(a-b)^2=a^2-2ab+b^2

Si se tiene un trinomio, es posible convertirlo en un cuadrado perfecto si cumple con las condiciones impuestas en la fórmula:

* El primer término es un cuadrado perfecto

* El último término es un cuadrado perfecto

* El segundo término es el doble del proudcto de los dos términos del binomio.

Tenemos la expresión:

\displaystyle \frac{100}{81}m^8p^{12}q^{16}z^2-\frac{20}{63}m^5p^7q^8z^5+ \frac{1}{49}m^2p^2z^8

Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:

\displaystyle a=\sqrt{\frac{100}{81}m^8p^{12}q^{16}z^2}

\displaystyle a=\frac{10}{9}m^4p^{6}q^{8}z

Calculamos el valor de a como la raiz cuadrada del primer término del trinomio:

\displaystyle b=\sqrt{\frac{1}{49}m^2p^2z^8

\displaystyle b=\frac{1}{7}mpz^4

Nos cercioramos de que el término central es 2ab:

\displaystyle 2ab=2\frac{10}{9}m^4p^{6}q^{8}z\frac{1}{7}mpz^4

Operando:

\displaystyle 2ab=\frac{20}{63}m^5p^7q^8z^5

Una vez verificado, ahora podemos decir que:

\displaystyle \frac{100}{81}m^8p^{12}q^{16}z^2-\frac{20}{63}m^5p^7q^8z^5+ \frac{1}{49}m^2p^2z^8=\left(\frac{10}{9}m^4p^{6}q^{8}z-\frac{1}{7}mpz^4\right)^2

5 0
2 years ago
Other questions:
  • I need help salving this
    15·1 answer
  • What is 4575 rounded to the nearest thousand
    15·2 answers
  • State whether the data described below are discrete or continuous, and explain why. The numbers of police cars different cities
    9·1 answer
  • I really need help. Solving Systems with Substitution<br><br> y=2x<br> x+y=(-9)
    6·1 answer
  • What is the 5th term in the sequence d(n)=5/16 (2)^n−1
    14·1 answer
  • 12(3+10)= 12x ?+ ? x10
    14·1 answer
  • A child fills a bucket with sand so that the bucket and sand together weigh 10 lbs, lifts it 2 feet up and then walks along the
    10·1 answer
  • Find the slope of the line without graphing using the 2 points below.
    10·1 answer
  • Yaxiiiiii i hope u see this!!!
    13·2 answers
  • a boat capsized and sank in the lake. based on an assumption of a mean weight of 143 lb, the boat was rated to carry 70 passenge
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!