Let the event ![A=\{ Sophomore \}, B=\{ Boy \}](https://tex.z-dn.net/?f=%20A%3D%5C%7B%20Sophomore%20%5C%7D%2C%20B%3D%5C%7B%20Boy%20%5C%7D%20)
The the probability of the events
![P(A \cap B)=\frac{5}{12+18} =\frac{1}{6}](https://tex.z-dn.net/?f=%20P%28A%20%5Ccap%20B%29%3D%5Cfrac%7B5%7D%7B12%2B18%7D%20%3D%5Cfrac%7B1%7D%7B6%7D%20%20)
![P( B)=\frac{12}{12+18} =\frac{2}{5}](https://tex.z-dn.net/?f=%20P%28%20B%29%3D%5Cfrac%7B12%7D%7B12%2B18%7D%20%3D%5Cfrac%7B2%7D%7B5%7D%20%20)
The conditional probability
![P(Sophomore|Boy)=P(A|B)=\frac{P(A \cap B)}{P(B)} =\frac{1/6}{2/5} =\frac{5}{12}](https://tex.z-dn.net/?f=%20P%28Sophomore%7CBoy%29%3DP%28A%7CB%29%3D%5Cfrac%7BP%28A%20%5Ccap%20B%29%7D%7BP%28B%29%7D%20%3D%5Cfrac%7B1%2F6%7D%7B2%2F5%7D%20%3C%2Fp%3E%3Cp%3E%3D%5Cfrac%7B5%7D%7B12%7D%20%20)
Answer:
Improper:
76/5
Take it to the power of 5.
2373046875/25
Answer:
see below the first three problems
Step-by-step explanation:
f(g(-2))
First, find g(-2) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(-2) = -2(-2) + 1
g(-2) = 5
f(x) = 5x
f(5) = 5(5)
f(5) = 25
f(g(-2)) = 25
g(h(3))
First, find h(3) using function h(x). Then use that value as input for function g(x).
h(x) = x^2 + 6x + 8
h(3) = 3^2 + 6(3) + 8 = 9 + 18 + 8
h(3) = 35
g(x) = -2x + 1
g(35) = -2(35) + 1 = -70 + 1
g(35) = -69
g(h(3)) = -69
f(g(3a))
First, find g(3a) using function g(x). Then use that value as input for function f(x).
g(x) = -2x + 1
g(3a) = -2(3a) + 1
g(3a) = -6a + 1
f(x) = 5x
f(-6a + 1) = 5(-6a + 1)
f(-6a + 1) = -30a + 5
f(g(3a)) = -30a + 5