$44.52 is the final cost of a flower bouquet.
Answer:
Step-by-step explanation:
I think it is C
Answer: the bottom right one
Step-by-step explanation:
you can put your pencil like this I and follow the line without two parts touching the line (vertical line test)
32 oz fish for.89 because it's .027 and the48 oz would be .028
Answer:
a) 
b) 0.0620
Step-by-step explanation:
We are given the following in the question:
Population mean,
= 6
Variance,
= 12
a) Value of 
We know that

Dividing the two equations, we get,

b) probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.
We can write the probability density function as:

We have to evaluate:
![P(x >12)\\\\= \dfrac{1}{16}\displaystyle\int^{\infty}_{12}f(x)dx\\\\=\dfrac{1}{16}\bigg[-2x^2e^{-\frac{x}{2}}-2\displaystyle\int xe^{-\frac{x}{2}}dx}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[x^2e^{-\frac{x}{2}}+4xe^{-\frac{x}{2}}+8e^{-\frac{x}{2}}\bigg]^{\infty}_{12}\\\\=\dfrac{1}{8}\bigg[(\infty)^2e^{-\frac{\infty}{2}}+4(\infty)e^{-\frac{\infty}{2}}+8e^{-\frac{\infty}{2}} -( (12)^2e^{-\frac{12}{2}}+4(12)e^{-\frac{12}{2}}+8e^{-\frac{12}{2}})\bigg]\\\\=0.0620](https://tex.z-dn.net/?f=P%28x%20%3E12%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B16%7D%5Cdisplaystyle%5Cint%5E%7B%5Cinfty%7D_%7B12%7Df%28x%29dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B16%7D%5Cbigg%5B-2x%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D-2%5Cdisplaystyle%5Cint%20xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7Ddx%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5Bx%5E2e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B4xe%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7Bx%7D%7B2%7D%7D%5Cbigg%5D%5E%7B%5Cinfty%7D_%7B12%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B8%7D%5Cbigg%5B%28%5Cinfty%29%5E2e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B4%28%5Cinfty%29e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B%5Cinfty%7D%7B2%7D%7D%20-%28%20%2812%29%5E2e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B4%2812%29e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%2B8e%5E%7B-%5Cfrac%7B12%7D%7B2%7D%7D%29%5Cbigg%5D%5C%5C%5C%5C%3D0.0620)
0.0620 is the required probability that on any given day the daily power consumption will exceed 12 million kilowatt hours.