It was from nuclear fusion. (Sorry if it’s wrong but I’m pretty sure it’s not!)
Answer:
Distinct mechanisms are used by bacteria in order to transfer the gene from one bacteria to another. These are transformation, transduction, and conjugation. Transformation refers to the process of uptaking extracellular DNA by the recipient of the other bacterial cell.
In the process of transduction, the donor DNA gets packed within the bacteriophage and infects the recipient bacteria. In the process of conjugation, the genetic substance is transferred by the donor bacteria to the recipient via the process of mating.
a. Of all these three mechanisms, transformation is the process that exhibits a broad range and can be easily performed in the lab. As in the process, there is a slight chance of rejection or failure due to direct compatibility between the bacteria.
b. While the narrowest broad range is found in the process of conjugation, as in order to transfer the genetic substance between the two bacterial species, there should be a similarity between the two species so that they can mate and exchange the genetic substance in between them.
<span>Ozone is simply a molecule consisting of 3 oxygen atoms, which reacts strongly with other molecules. Ozone is created in the stratosphere when high energy uv radiation causes on O2 molecule to split. The free oxygen atoms collide and react with other O2 molecules to form O3.</span>
Production is highest where the solar uv is the greatest eg near the tropics, but once created, the ozone is then circulated towards the poles by the atmosphere. The amount of ozone in the stratosphere can vary with location, season and even day to day climatic conditions.
<span>The process of ozone creation is what makes the O3 in the atmosphere very effective at shielding the Earth from harmful uv radiation, which can cause many biological problems, such as skin cancer. However, due to its high reactivity, the uv found in the tropospher at ground level can aslo be dangerous as a toxic pollutant which is harmful to plants and lung tissue, and is a major cause of smog.</span>
The right option is granulosa
cells to produce estrogens
In the female reproductive
system, FSH stimulates granulosa cells to produce estrogens. FSH acts on a single
flat layer of support cells known as granulosa cells. It makes the cells active
as they increase in size and proliferate to produce estrogens.