1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
15

Which equation or graph represents a non proportional relationship

Mathematics
1 answer:
Ad libitum [116K]3 years ago
7 0

Answer:

Step-by-step explanation:

The answer is A

You might be interested in
Select the correct answer.<br> What are the solutions of this quadratic equation?<br> 25x^2 + 1 = 0
Llana [10]

Answer:

no solution because the square root of a negative number is not a real number d=-100

4 0
2 years ago
The length of a rectangle is 4 more than the width. The entire perimeter is 38".
Novosadov [1.4K]
L = 4 + w
perimeter = 38

38 = w + 4 + w
2w = 34
w = 17

L = 4 + 17
L = 21

i am a mathematics teacher. if anything to ask please pm me
4 0
3 years ago
A 200-gal tank contains 100 gal of pure water. At time t = 0, a salt-water solution containing 0.5 lb/gal of salt enters the tan
Artyom0805 [142]

Answer:

1) \frac{dy}{dt}=2.5-\frac{3y}{2t+100}

2) y(t)=(50+t)- \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }}

3) 98.23lbs

4) The salt concentration will increase without bound.

Step-by-step explanation:

1) Let y represent the amount of salt in the tank at time t, where t is given in minutes.

Recall that: \frac{dy}{dt}=rate\:in-rate\:out

The amount coming in is 0.5\frac{lb}{gal}\times 5\frac{gal}{min}=2.5\frac{lb}{min}

The rate going out depends on the concentration of salt in the tank at time t.

If there is y(t) pounds of  salt and there are 100+2t gallons at time t, then the concentration is: \frac{y(t)}{2t+100}

The rate of liquid leaving is is 3gal\min, so rate out is =\frac{3y(t)}{2t+100}

The required differential equation becomes:

\frac{dy}{dt}=2.5-\frac{3y}{2t+100}

2) We rewrite to obtain:

\frac{dy}{dt}+\frac{3}{2t+100}y=2.5

We multiply through by the integrating factor: e^{\int \frac{3}{2t+100}dt }=e^{\frac{3}{2} \int \frac{1}{t+50}dt }=(50+t)^{\frac{3}{2} }

to get:

(50+t)^{\frac{3}{2} }\frac{dy}{dt}+(50+t)^{\frac{3}{2} }\cdot \frac{3}{2t+100}y=2.5(50+t)^{\frac{3}{2} }

This gives us:

((50+t)^{\frac{3}{2} }y)'=2.5(50+t)^{\frac{3}{2} }

We integrate both sides with respect to t to get:

(50+t)^{\frac{3}{2} }y=(50+t)^{\frac{5}{2} }+ C

Multiply through by: (50+t)^{-\frac{3}{2}} to get:

y=(50+t)^{\frac{5}{2} }(50+t)^{-\frac{3}{2} }+ C(50+t)^{-\frac{3}{2} }

y(t)=(50+t)+ \frac{C}{(50+t)^{\frac{3}{2} }}

We apply the initial condition: y(0)=0

0=(50+0)+ \frac{C}{(50+0)^{\frac{3}{2} }}

C=-12500\sqrt{2}

The amount of salt in the tank at time t is:

y(t)=(50+t)- \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }}

3) The tank will be full after 50 mins.

We put t=50 to find how pounds of salt it will contain:

y(50)=(50+50)- \frac{12500\sqrt{2} }{(50+50)^{\frac{3}{2} }}

y(50)=98.23

There will be 98.23 pounds of salt.

4) The limiting concentration of salt is given by:

\lim_{t \to \infty}y(t)={ \lim_{t \to \infty} ( (50+t)- \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }})

As t\to \infty, 50+t\to \infty and \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }}\to 0

This implies that:

\lim_{t \to \infty}y(t)=\infty- 0=\infty

If the tank had infinity capacity, there will be absolutely high(infinite) concentration of salt.

The salt concentration will increase without bound.

6 0
3 years ago
Can someone help me with this math problem
zepelin [54]

Answer:

$50.50 = 18 + 5n

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
How do I solve (7-6i)(-8+3i)?
Alekssandra [29.7K]
I = {2.666666667, 1.166666667
6 0
3 years ago
Read 2 more answers
Other questions:
  • Must list steps! 15 Points! Will mark brainliest! Find the roots for f(n)=n^2-6n-16
    11·1 answer
  • The measures of two angles of a triangle are 23 and 67. Is the triangle acute, right, or obtuse. Use geometric terms in explanat
    13·1 answer
  • Please help ! I’ll give brainliest
    10·1 answer
  • Equivalent to<br> what is a expression equivalent to log18 – log(p + 2)?
    5·1 answer
  • 10 POINTS!!!
    10·1 answer
  • A rectangular piece of cardboard that is 7 inches by 20 inches has squares of length x inches on a side cut from each corner.
    8·1 answer
  • Solve 7z^2 + 4z - 1) + (2z^2 - 6z + 2)
    7·1 answer
  • The staff takes 1/2 of an hour to assemble 1/8 of the booths. How long does it take the staff to assemble all of the booths?
    6·2 answers
  • Find the missing x value for for question 14
    6·1 answer
  • The population of small town grew from 4732 to 5967 from
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!