1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
3 years ago
6

Solve the following 6x+2x=2(4x-7)- 6 help please I'd appreciate it <3

Mathematics
2 answers:
antiseptic1488 [7]3 years ago
6 0
6x+2x=2(4x-7)-6

8x=8x-14-6
Cancel equal terms
0=-14-6
Calculate
0=-20
The statement is false
X=0
arlik [135]3 years ago
4 0

Answer:

NoSolutions

Also written as ∅

Step-by-step explanation:

6x + 2x = 2(4x - 7) - 6

Add 6x + 2x

8x = 2(4x - 7) - 6

Multiply 2(4x - 7)

8x = 8x - 14 - 6

Subtract - 14 - 6

8x = 8x - 20

Add 20 to both sides of the equation

8x + 20 = 8x

20 = 0x

NoSolutions (∅)

Hope this helps :)

You might be interested in
Find the volume of the cone. Use 3.14 for π. Round to the nearest tenth.
Leviafan [203]

Volume\,\,of\,\,cone=1527.1\,\,cm^3

So, Option C is correct.

Step-by-step explanation:

We need to find Volume of cone.

We are given:

π = 3.14

Length = 27 cm

Diameter = 15 cm

The formula used to find Volume of cone is:

Volume\,\,of\,\,cone=\frac{1}{3}\pi  r^2h

We are given diameter but we need radius in the formula

So, Radius = Diameter/2 = 15/2 = 7.5 cm

We need to find height of cone.

Using Pythagoras theorem:

h^2=p^2+b^2\\ (27)^2=p^2+(7.5)^2\\729=p^2+56.25\\p^2=729-56.25\\p^2=672.75\\Taking\,\,square\,\,root:\\p=25.93

So, Height of cone = p= 25.93

So, r= 7.5 and h= 25.93 and π = 3.14

Putting values in the formula:

Volume\,\,of\,\,cone=\frac{1}{3}3.14*(7.5)^2*25.93

Volume\,\,of\,\,cone=1526.62

Rounding off to the nearest tenth:

Volume\,\,of\,\,cone=1527.1\,\,cm^3

So, Option C is correct.

Keywords: Volume of cone.

Learn more about Volume of cone at:

  • brainly.com/question/12497249
  • brainly.com/question/6443737

#learnwithBrainly

6 0
4 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Find the perimeter and area of the following
elena55 [62]

16. PM = 26x + 8x^2y

A = 52x^3y

17. Area = 33a^5b

3 0
2 years ago
Im trying to figure out the answer
Molodets [167]

Step-by-step explanation:

\sqrt{35} =\sqrt{5} *\sqrt{7};

all the details are in the attachment.

3 0
2 years ago
Sasha can run at an average speed of 934 9 3 4 min/mi. She runs at this speed for 6814 68 1 4 min. How many miles does Sasha run
lutik1710 [3]
I don't know what the spaces are meant for but I think that means 934 and 6814 only. Another point is, speed should be expressed in units of distance over time. So that would be miles/min.

So, distance could be calculated by multiplying speed and time.

d = 934 mi/min * 6814 min
d = 6,364,276 miles


8 0
3 years ago
Other questions:
  • BRAINLIEST FOR FIRST ANSWER!!! A right rectangular pyramid is sliced parallel to its base as shown in the figure.
    8·2 answers
  • What is the length of DE?? Thx :)
    7·1 answer
  • You are baking doughnuts for your class. There are 8 total students in your class and you have baked 11 doughnuts. Write and sol
    6·2 answers
  • I need to turn this in! can anyone help ???
    15·1 answer
  • I need help on the question . I have in math
    8·1 answer
  • SUPER EASY! PLEASE HELP, I will mark brainliest
    7·2 answers
  • Find each of the angle measures of the polygon with the angles of (x-5) (x+35) 1.4x and x
    15·1 answer
  • Solve the following system of equations algebraically.
    12·1 answer
  • Find the values of x and y.<br> т<br> &gt;<br> 75°<br> 45<br> (6x + 3)
    13·1 answer
  • Writing y = mx + b given a Graph
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!