Answer: −10
Step-by-step explanation: 9^2−21/−6
81−21/−6
60/−6
−10
Answer:
$3.20
Step-by-step explanation:
Answer:
Step-by-step explanation:
These triangles are similar triangles, so there is a number that you can multiply the sides of TUV to find the side lengths of QRS. looking at the triangle, the similar sides are RS being similar to UV and RQ being similar to UT.
If RS~UV, then there is a ratio between them. 54/36=1.5. The ratio is 1.5.
RQ~UT, and by a factor of 1.5, so divide RQ by the scale factor. 24/1.5=16. UT=16=x+5.
x+5=16, subtract 5 from both sides.
x=11
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.