It is a very simple answer but it works!
Answer:
The required solution is (5.75,-0.5). It can be written as
.
Step-by-step explanation:
The given equations are
.... (1)
.... (2)
Multiply the equation (2) by 2.
.... (3)
Subtract equation (1) from equation (3).




Put this value in equation (1).




Therefore the required solution is (5.75,-0.5). It can be written as
.
The equation of a line that is perpendicular to the given line is y = –4x – 16.
Solution:
The equation of a line given is y = 0.25x – 7
Slope of the given line(
) = 0.25
Let
be the slope of the perpendicular line.
Passes through the point (–6, 8).
<em>If two lines are perpendicular then the product of the slopes equal to –1.</em>




Point-slope intercept formula:

and 
Substitute these in the formula, we get



Add 8 on both sides of the equation.


Hence the equation of a line that is perpendicular to the given line is
y = –4x – 16
The range is {-37,-25,-13,-1}. So you need to figure out what four numbers from this list of numbers (1,2,3,4,5,6,7,8), when applied to this
function, ( f(x)=-6x+11 ), equals these numbers that are in the range {-37,-25,-13,-1}.
So you apply each of these numbers (1,2,3,4,5,6,7,8) into the function (f(x)=-6x+11)
one by one.
f(1)=-6(1)+11=5
f(2)=-6(2)+11= -1
f(3)=-6(3)+11= -7
f(4)=-6(4)+11= -13
f(5)=-6(5)+11= -19
f(6)=-6(6)+11= -25
f(7)=-6(7)+11= -31
f(8)=-6(8)+11= -37
As you can see, f(2),f(4),f(6),and f(8) equal the numbers that are in the range {-37,-25,-13,-1}.