Answer:
B will be the answer...
Step-by-step explanation:
The second equation in system B is only in terms of y, so we need to use elimination to eliminate the x term from the second equation in system A.
To do that, we need to multiply the first equation by 5.
5 (-x − 2y = 7)
-5x − 10y = 35
Add to the second equation. Notice the x terms cancel out.
(-5x − 10y) + (5x − 6y) = 35 + (-3)
-16y = 32
Combining this new equation with the first equation from system A will get us system B.
-x − 2y = 7
-16y = 32
Answer:
15 units per unit
Step-by-step explanation:
From the graph we can easily tell that y increases from 0 to 15 as x increases from 2 to 3.
Thus, the average rate of change of f(x) on the interval [2, 3] is:
1 15 - 0 15 units
--------- * ----------- = -------------- = 15 units (rise) per unit (run).
3 - 2 1 1
Answer:
see attached
Step-by-step explanation:
I find it convenient to let a graphing calculator draw the graph (attached).
__
If you're drawing the graph by hand, there are a couple of strategies that can be useful.
The first equation is almost in slope-intercept form. Dividing it by 2 will put it in that form:
y = 2x -4
This tells you that the y-intercept, (0, -4) is a point on the graph, as is the point that is up 2 and right 1 from there: (1, -2). A line through those points completes the graph.
__
The second equation is in standard form, so the x- and y-intercepts are easily found. One way to do that is to divide by the constant on the right to get ...
x/2 +y/3 = 1
The denominators of the x-term and the y-term are the x-intercept and the y-intercept, respectively. If that is too mind-bending, you can simply set x=0 to find the y-intercept:
0 +2y = 6
y = 6/2 = 3
and set y=0 to find the x-intercept
3x +0 = 6
x = 6/3 = 2
Plot the intercepts and draw the line through them for the graph of this equation.
___
Here, we have suggested graphing strategies that don't involve a lot of manipulation of the equations. The idea is to get there as quickly as possible with a minimum of mistakes.