The question is improperly formatted.
What is the concentration of H+ ions in a 2.2 M solution of HNO3.
Answer:-
2.2 moles of H+ per litre
Explanation:-
M stands for molarity. 2.2 M means 2.2 moles of HNO3 is present per litre of the solution.
Now HNO3 has just 1 H in it's formula. HNO3 would give H+. So 2.2 moles of HNO3 would mean 2.2 moles of H+ per litre.
Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
Answer:
6.43 moles of NF₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of nitrogen trifluoride (NF₃) produced by the reaction of 9.65 moles of Fluorine gas (F₂). This can be obtained as follow:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, 9.65 moles of F₂ will react to to produce = (9.65 × 2)/3 = 6.43 moles of NF₃.
Thus, 6.43 moles of NF₃ were obtained from the reaction.
Answer:
1
Explanation:
For an ideal gas, the average kinetic energy is given by:
Ek = (3/2)*n*R*T
Where n is the number of moles, R is the gas constant (8.31 J/mol*K), and T the temperature. The gases have the same number of moles, and the same temperature, so they will have the same average kinetic energy:
Ek = (3/2)*1*8.31*300
Ek =3739.5 J
So, the ratio between then is 1.
Answer:
81°C.
Explanation:
To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released from water (Q = - 1200 J).
m is the mass of the water (m = 20.0 g).
c is the specific heat capacity of water (c of water = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = final T - 95.0°C).
∵ Q = m.c.ΔT
∴ (- 1200 J) = (20.0 g)(4.186 J/g.°C)(final T - 95.0°C ).
(- 1200 J) = 83.72 final T - 7953.
∴ final T = (- 1200 J + 7953)/83.72 = 80.67°C ≅ 81.0°C.
<em>So, the right choice is: 81°C.</em>