<span>Answer: The 1 kg of water will reach the lowest temperature
</span>
Both of the objects is water so their specific heat should be same. The heat removed from the 2kg of water which is 2 times of mass than the 1kg water. Since the heat removed, both of their temperatures will drops. But 2kg water temperature drops will be half of 1kg water.
Depends if the reaction is endo or exo thermic
Endothermic reaction
Increasing the temperature will shift the equilibrium to the right-hand side of the equilibrium. to oppose the change in temperature.
Exothermic reaction
Increasing the temperature will shift the equilibrium to the left-hand side of the equilibrium. to oppose the change in temperature.
Hope that helps
Answer:
13.5 years
Explanation:
Initial Concentration [Ao] = 10g
Final Concentration [A] = 0.768g
Time t= 50 years
Half life t1/2 = ?
These quantities are related by the following equations;
ln[A] = ln[Ao] - kt ......(i)
t1/2 = ln(2) / k ...........(ii)
where k = rate constant
Inserting the values in eqn (i) and solving for k, we have;
ln(0.768) = ln(10) - k (50)
-0.2640 = 2.3026 - 50k
50k = 2.3026 + 0.2640
k = 2.5666 / 50 = 0.051332
Insert the value of k in eqn (ii);
t1/2 = ln(2) / k
t1/2 = 0.693 / 0.051332 = 13.5 years
Answer:
We are considering an Allene molecule here, CH2CCH2. To answer your question, NO, they don't have to lie on the same plane. The spatial arrangement between them is that the center carbon that forms these pi bind in the left and right are PERPENDICULAR to each other.
Explanation:
We see here that The terminal carbons are sp2 hybridized, and form three σ-bonds each which means that each terminal carbon has one unhybridized p-orbital. The central carbon atom is sp hybridized, and forms two σ-bonds which means it has two unhybridized p-orbitals. For better understanding, let's call these two orbitals px and py. Summarily, These orbitals are perpendicular to each other