K=h bacuse its. dhhhhgggggggdggdgdgddggdbdhejjejehshshsbsbsbs
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:

Derivative Property [Addition/Subtraction]:

Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution/u-solve</em>.
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Derivative Rules and Properties]:

- [<em>du</em>] Rewrite [U-Solve]:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Apply U-Solve:

- [Integrand] Simplify:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Apply Integration Rule [Reverse Power Rule]:

- [<em>u</em>] Back-substitute:

∴ we have used u-solve (u-substitution) to <em>find</em> the indefinite integral.
---
Learn more about integration: brainly.com/question/27746495
Learn more about Calculus: brainly.com/question/27746485
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
The area of the rhombus and trapezoid from the figure are 2 square in and 5 square in respectively
<h3>How to find the area of a trapezoid and rhombus?</h3>
The given pattern consists of rhombus and trapezoids
The formula for calculating the area of rhombus is expressed as:
A = pq/2
Area of trapezoid = 0.5(a+b)h
Given the following
height = 2in
a = 2in
b = 3in
Ara of rhombus = 1(4)/2 = 2 square inches
Area of the trapezoid = 0.5(2+3) * 2
Area of the trapezoid = 5 square inches
Hence the area of the rhombus and trapezoid from the figure are 2 square in and 5 square in respectively
Learn more on area of rhombus and trapezoid here: brainly.com/question/2456096
The starting percent is 100%. After one hour, bacteria tripled, so it is 300%.
I would say 50/50 chance because it can go ether ways one can go heads the others can go tails