Answer:
![\huge\boxed{\sqrt[3]{c^4}=c^\frac{4}{3}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D%7D)
Step-by-step explanation:
![\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\text{therefore}\\\\\sqrt[3]{c^4}=c^\frac{4}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%5Cfrac%7Bm%7D%7Bn%7D%5C%5C%5C%5C%5Ctext%7Btherefore%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bc%5E4%7D%3Dc%5E%5Cfrac%7B4%7D%7B3%7D)
<h3>
Answer: 625</h3>
Work Shown:
The set {A,B,C,1,2} has five items. There are four slots to fill.
So we have 5^4 = 5*5*5*5 = 625 different possible passwords where the characters can be repeated.
Hi the answer to this is
A - Vertical Asymptote
The irrational number would be square root 15
Answer:
1. x=6
2. y=2
Step-by-step explanation:
If x=5, the line is vertical, so we need a vertical line so that we are parallel. A vertical line is x= a constant
We can choose the value for x as long as it is not 5, that would make it the same line. I will choose x=6
If y=-3=5, the line is horizontal, so we need a horizontal line so that we are parallel. A horizontal line is y= constant
We can choose the value for y as long as it is not -3, that would make it the same line. I will choose y=2