Answer:
Peyton's account will have $13,842.18 after a year.
Step-by-step explanation:
Given that Peyton received $ 12,700 and decided to invest it for a year in an account that grants an interest of 8.8% per year, compounded semiannually, to determine the amount of money that will be in said account after the passage of one year, it is necessary to perform the following calculation:
X = 12,700 (1 + 0.088 / 2) ^ 1x2
X = 13,842.18
Therefore, after a year has passed, Peyton's account will be $ 13,842.18.
Answer:
100 people
Step-by-step explanation:
<em>Population</em><em> </em><em>Of</em><em> </em><em>People</em><em>=</em><em>1</em><em>1</em><em>5</em><em>Percentage</em><em>ncrease</em><em>=</em><em>1</em><em>5</em><em>%</em>
<em>The</em><em> </em><em>New</em><em> </em><em>Population </em><em>corresponds </em><em>to</em><em> </em><em>1</em><em>1</em><em>5</em><em>%</em>
<em>(</em><em>That</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>+</em><em>1</em><em>5</em><em>)</em>
<em>We</em><em> </em><em>want</em><em> </em><em>to </em><em>find</em><em> </em><em>the</em><em> </em><em>popula</em><em>tion</em><em> </em><em>that</em><em> </em><em>corresponds</em><em> </em><em>to </em><em>100%</em><em> </em><em>that </em><em>is </em><em>the</em><em> </em><em>original</em><em> </em><em>population</em><em>.</em>
<em>Therefore</em><em> </em><em>Original </em><em>Population</em><em>;</em>
<em>
</em>
<em>
</em>
Answer:
1
-12
3
6
Step-by-step explanation:
Answer:
The values of x for which the model is 0 ≤ x ≤ 3
Step-by-step explanation:
The given function for the volume of the shipping box is given as follows;
V = 2·x³ - 19·x² + 39·x
The function will make sense when V ≥ 0, which is given as follows
When V = 0, x = 0
Which gives;
0 = 2·x³ - 19·x² + 39·x
0 = 2·x² - 19·x + 39
0 = x² - 9.5·x + 19.5
From an hint obtained by plotting the function, we have;
0 = (x - 3)·(x - 6.5)
We check for the local maximum as follows;
dV/dx = d(2·x³ - 19·x² + 39·x)/dx = 0
6·x² - 38·x + 39 = 0
x² - 19/3·x + 6.5 = 0
x = (19/3 ±√((19/3)² - 4 × 1 × 6.5))/2
∴ x = 1.288, or 5.045
At x = 1.288, we have;
V = 2·1.288³ - 19·1.288² + 39·1.288 ≈ 22.99
V ≈ 22.99 in.³
When x = 5.045, we have;
V = 2·5.045³ - 19·5.045² + 39·5.045≈ -30.023
Therefore;
V > 0 for 0 < x < 3 and V < 0 for 3 < x < 6.5
The values of x for which the model makes sense and V ≥ 0 is 0 ≤ x ≤ 3.