Answer: The probability that the diameter of a selected bearing is greater than 109 millimeters is 0.047
Step-by-step explanation:
Since the diameters of ball bearings are distributed normally, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = the diameters of ball bearings.
µ = mean diameter
σ = standard deviation
From the information given,
µ = 104 millimeters
σ = 3 millimeters
The probability that the diameter of a selected bearing is greater than 109 millimeters is expressed as
P(x > 109) = 1 - P(x ≤ 109)
For x = 109,
z = (109 - 104)/3 = 1.67
Looking at the normal distribution table, the probability corresponding to the z score is 0.953
Therefore,
P(x > 109) = 1 - 0.953 = 0.047