1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina [24]
3 years ago
12

What are expression

Mathematics
1 answer:
Papessa [141]3 years ago
5 0
Like an expression is 2x>5
You might be interested in
What is the relationship between the 6s in 660,472​
bixtya [17]
The first 6 is 600,00 and the second is 60,000, so they are in the hundred thousands place and the thousands place
6 0
3 years ago
Read 2 more answers
You and six friends play a game where each person writes down his or her name on a scrap of paper, and the names are randomly di
Vanyuwa [196]
It would be 1/7 chance cause there are 7 people total but you have the 1 chance that you are going to get your own name
7 0
3 years ago
IM STCK PLZ HELP!!! THANK YOU :)
lesya [120]

Answer:

x = 81, y = 68 and z = 99

Step-by-step explanation:

The external angle of a triangle is equal to the sum of the 2 opposite interior angles.

z is an exterior angle, thus

z = 63 + 36 = 99

x and z form a straight angle and are supplementary, so

x + z = 180, that is

x + 99 = 180 ( subtract 99 from both sides )

x = 81

The sum of the 3 angles in a triangle = 180°, thus

z + y + 13 = 180, that is

99 + y + 13 = 180

112 + y = 180 ( subtract 112 from both sides )

y = 68

7 0
3 years ago
I need help with question B)
Lady bird [3.3K]

Answer:

i cant see the graph, how do you expect us to awser you

3 0
2 years ago
Using Laplace transforms, solve x" + 4x' + 6x = 1- e^t with the following initial conditions: x(0) = x'(0) = 1.
professor190 [17]

Answer:

The solution to the differential equation is

X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)

Step-by-step explanation:

Applying Laplace Transform will help us solve differential equations in Algebraic ways to find particular  solutions, thus after applying Laplace transform and evaluating at the initial conditions we need to solve and apply Inverse Laplace transform to find the final answer.

Applying Laplace Transform

We can start applying Laplace at the given ODE

x''(t)+4x'(t)+6x(t)=1-e^t

So we will get

s^2 X(s)-sx(0)-x'(0)+4(sX(s)-x(0))+6X(s)=\cfrac 1s -\cfrac1{s-1}

Applying initial conditions and solving for X(s).

If we apply the initial conditions we get

s^2 X(s)-s-1+4(sX(s)-1)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Simplifying

s^2 X(s)-s-1+4sX(s)-4+6X(s)=\cfrac 1s -\cfrac1{s-1}

s^2 X(s)-s-5+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Moving all terms that do not have X(s) to the other side

s^2 X(s)+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}+s+5

Factoring X(s) and moving the rest to the other side.

X(s)(s^2 +4s+6)=\cfrac 1s -\cfrac1{s-1}+s+5

X(s)=\cfrac 1{s(s^2 +4s+6)} -\cfrac1{(s-1)(s^2 +4s+6)}+\cfrac {s+5}{s^2 +4s+6}

Partial fraction decomposition method.

In order to apply Inverse Laplace Transform, we need to separate the fractions into the simplest form, so we can apply partial fraction decomposition to the first 2 fractions. For the first one we have

\cfrac 1{s(s^2 +4s+6)}=\cfrac As + \cfrac {Bs+C}{s^2+4s+6}

So if we multiply both sides by the entire denominator we get

1=A(s^2+4s+6) +  (Bs+C)s

At this point we can find the value of A fast if we plug s = 0, so we get

1=A(6)+0

So the value of A is

A = \cfrac 16

We can replace that on the previous equation and multiply all terms by 6

1=\cfrac 16(s^2+4s+6) +  (Bs+C)s

6=s^2+4s+6 +  6Bs^2+6Cs

We can simplify a bit

-s^2-4s=  6Bs^2+6Cs

And by comparing coefficients we can tell the values of B and C

-1= 6B\\B=-1/6\\-4=6C\\C=-4/6

So the separated fraction will be

\cfrac 1{s(s^2 +4s+6)}=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6}

We can repeat the process for the second fraction.

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac A{s-1} + \cfrac {Bs+C}{s^2+4s+6}

Multiplying by the entire denominator give us

1=A(s^2+4s+6) + (Bs+C)(s-1)

We can plug the value of s = 1 to find A fast.

1=A(11) + 0

So we get

A = \cfrac1{11}

We can replace that on the previous equation and multiply all terms by 11

1=\cfrac 1{11}(s^2+4s+6) + (Bs+C)(s-1)

11=s^2+4s+6 + 11Bs^2+11Cs-11Bs-11C

Simplifying

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C

And by comparing coefficients we can tell the values of B and C.

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C\\-1=11B\\B=-\cfrac{1}{11}\\5=-11C\\C=-\cfrac{5}{11}

So the separated fraction will be

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac {1/11}{s-1} + \cfrac {-s/11-5/11}{s^2+4s+6}

So far replacing both expanded fractions on the solution

X(s)=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6} -\cfrac {1/11}{s-1} -\cfrac {-s/11-5/11}{s^2+4s+6}+\cfrac {s+5}{s^2 +4s+6}

We can combine the fractions with the same denominator

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {-s/6-4/6+s/11+5/11+s+5}{s^2 +4s+6}

Simplifying give us

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{s^2 +4s+6}

Completing the square

One last step before applying the Inverse Laplace transform is to factor the denominators using completing the square procedure for this case, so we will have

s^2+4s+6 = s^2 +4s+4-4+6

We are adding half of the middle term but squared, so the first 3 terms become the perfect  square, that is

=(s+2)^2+2

So we get

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{(s+2)^2 +(\sqrt 2)^2}

Notice that the denominator has (s+2) inside a square we need to match that on the numerator so we can add and subtract 2

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2-2)/66+316 /66}{(s+2)^2 +(\sqrt 2)^2}\\X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66+194 /66}{(s+2)^2 +(\sqrt 2)^2}

Lastly we can split the fraction one more

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66}{(s+2)^2 +(\sqrt 2)^2}+\cfrac {194 /66}{(s+2)^2 +(\sqrt 2)^2}

Applying Inverse Laplace Transform.

Since all terms are ready we can apply Inverse Laplace transform directly to each term and we will get

\boxed{X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)}

6 0
3 years ago
Other questions:
  • The sears tower in chicago is 1450 feet high. A model of the tower is 24 inches tall. What is the ratio of the height of the mod
    14·2 answers
  • Please help me ASAP!!!
    12·1 answer
  • The lists below gives the donations, in dollars that two different charities received in 1 day. Compare the means of the two dat
    8·1 answer
  • What is the solution of 9x-8=34x-12
    11·1 answer
  • Find the value of y of the figure below.
    9·1 answer
  • Branden and Pete both play running back. Branden carries the ball 75 times for 550 yards and Pete had 42 carries for 380 yards w
    8·1 answer
  • One gallon of paint usually covers about 350 square feet. How many square feet will 2.5 gallons cover? Show your
    6·1 answer
  • If you divided a number by 0.5, the result would be A. twice the original number. B. half of the original number. C. a fifth of
    8·2 answers
  • Find the inverse of f(x)=x/4-7
    7·2 answers
  • Does the table below represent a proportional relationship?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!