X would be 0.5. Hope this helped
Answer:
a) 8π
b) 8/3 π
c) 32/5 π
d) 176/15 π
Step-by-step explanation:
Given lines : y = √x, y = 2, x = 0.
<u>a) The x-axis </u>
using the shell method
y = √x = , x = y^2
h = y^2 , p = y
vol = ( 2π ) 
=
∴ Vol = 8π
<u>b) The line y = 2 ( using the shell method )</u>
p = 2 - y
h = y^2
vol = ( 2π )
= 
= ( 2π ) * [ 2/3 * y^3 - y^4 / 4 ] ²₀
∴ Vol = 8/3 π
<u>c) The y-axis ( using shell method )</u>
h = 2-y = h = 2 - √x
p = x
vol = 
= 
= ( 2π ) [x^2 - 2/5*x^5/2 ]⁴₀
vol = ( 2π ) ( 16/5 ) = 32/5 π
<u>d) The line x = -1 (using shell method )</u>
p = 1 + x
h = 2√x
vol = 
Hence vol = 176/15 π
attached below is the graphical representation of P and h
So 5 liters of natural for every 7 synthetic, so 5 / 12 liters are natural oil.
so; 684 × (5/12) = 285 liters of natural oil
Hope this helps!
Answer:
71.123 mph ≤ μ ≤ 77.277 mph
Step-by-step explanation:
Taking into account that the speed of all cars traveling on this highway have a normal distribution and we can only know the mean and the standard deviation of the sample, the confidence interval for the mean is calculated as:
≤ μ ≤ 
Where m is the mean of the sample, s is the standard deviation of the sample, n is the size of the sample, μ is the mean speed of all cars, and
is the number for t-student distribution where a/2 is the amount of area in one tail and n-1 are the degrees of freedom.
the mean and the standard deviation of the sample are equal to 74.2 and 5.3083 respectively, the size of the sample is 10, the distribution t- student has 9 degrees of freedom and the value of a is 10%.
So, if we replace m by 74.2, s by 5.3083, n by 10 and
by 1.8331, we get that the 90% confidence interval for the mean speed is:
≤ μ ≤ 
74.2 - 3.077 ≤ μ ≤ 74.2 + 3.077
71.123 ≤ μ ≤ 77.277