Since both cars move together after the collision, then this is an example of an inelastic collision. The formula for an inelastic collision is as follows:
m1u1 + m2u2 = (m1 + m2)v
Where:
m1 = mass of the first object
m2 = mass of the second object
u1 = initial velocity of the first object
u2 = initial velocity of the second object
v = final velocity
Substituting the given values to solve for v:
900*22 + 900*15 = (900 + 900)v
v = 18.5 m/s
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s
Answer:
Magnitude of kinetic force is the product of the normal force and the coefficient of kinetic friction.
Explanation:
The kinetic frictional force is the force which is experienced in the moving surfaces of bodies.The magnitude of the force is affected by the coefficient of kinetic friction between the material of two bodies in contact. Mathematically, it is expressed as;
Fk=μk*η
where;
- Fk=force of kinetic friction
- μk=coefficient of kinetic friction
- η=normal force
Answer:
In the water cycle, evaporation occurs when sunlight warms the surface of the water. The heat from the sun makes the water molecules move faster and faster, until they move so fast they escape as a gas. Once evaporated, a molecule of water vapor spends about ten days in the air.
Explanation: