9514 1404 393
Answer:
P(0) = 4
P(-2) = 2
Step-by-step explanation:
Put the value where the variable is and do the arithmetic.
P(0) = 2·0³ +3·0² -0 +4
P(0) = 4
__
P(-2) = 2·(-2)³ +3·(-2)² -(-2) +4 = 2(-8) +3(4) +2 +4
P(-2) = -16 +12 +2 +4
P(-2) = 2
Answer:
7+28=35
Step-by-step explanation:
Answer:
qwertyuasdfghjk
Step-by-step explanation:
ashkdsbvnxz egufwoD;vbjxz> n
Answer:
see below
Step-by-step explanation:
<h3>Proposition:</h3>
Let the diagonals AC and BD of the Parallelogram ABCD intercept at E. It is required to prove AE=CE and DE=BE
<h3>Proof:</h3>
1)The lines AD and BC are parallel and AC their transversal therefore,
![\displaystyle \angle DAC = \angle ACB \\ \ \qquad [\text{ alternate angles theorem}]](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cangle%20DAC%20%3D%20%20%5Cangle%20ACB%20%5C%5C%20%20%5C%20%5Cqquad%20%5B%5Ctext%7B%20alternate%20angles%20theorem%7D%5D)
2)The lines AB and DC are parallel and BD their transversal therefore,
![\displaystyle \angle BD C= \angle ABD \\ \ \qquad [\text{ alternate angles theorem}]](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cangle%20BD%20C%3D%20%20%5Cangle%20ABD%20%5C%5C%20%20%5C%20%5Cqquad%20%5B%5Ctext%7B%20alternate%20angles%20theorem%7D%5D)
3)now in triangle ∆AEB and ∆CED
therefore,

hence,
Proven
since triangles are similar
=》 21/9 = x/3
=》 x = 21×3/9 =7