1. 4x - 8 + 2x + (-5x) + x^2 - 3 = 4x - 8 + 2x - 5x + x^2 - 3...now, we just combine like terms....lets group them...it will be easier ...x^2 + (4x + 2x - 5x ) - 8 - 3 = x^2 + x - 11
2. 2x + 5x = 8x
3. 2r + 4 + 3x - 2 = 3x + 2r + (4 - 2) = 3x + 2r + 2
4. 3x - 2y - x + 5y = (3x - x) + (5y - 2y) = 2x + 3y
5. 2y^2 - 8y^3 + 5y - 5y^2 + 4y^3 = (4y^3 - 8y^3) + (2y^2 - 5y^2) + 5y =
-4y^3 - 3y^2 + 5y
X=4
Y=-0.5
Do you need an explanation?
Answer:
Step-by-step explanation:
1. Null hypothesis: u <= 0.784
Alternative hypothesis: u > 0.784
2. Find the test statistics: z using the one sample proportion test. First we have to find the standard deviation
Using the formula
sd = √[{P (1-P)}/n]
Where P = 0.84 and n = 750
sd =√[{0.84( 1- 0.84)/750]}
sd=√(0.84 (0.16) /750)
SD =√(0.1344/750)
sd = √0.0001792
sd = 0.013
Then using this we can find z
z = (p - P) / sd
z = (0.84-0.784) / 0.013
z =(0.056/0.013)
z = 4.3077
3. Find the p value and use it to make conclusions...
The p value at 0.02 level of significance for a one tailed test with 4.3077 as z score and using a p value calculator is 0.000008254.
4. Conclusions: the results is significant at 0.02 level of significance suck that we can conclude that its on-time arrival rate is now higher than 78.4%.
Based on the box plots, the statement which is correct is that: A. The median score of Class A is greater than the median score of Class B.
<h3>What is a box and whisker plot?</h3>
In Mathematics, a box plot is also referred to as box and whisker plot and it can be defined as a type of chart that can be used to graphically or visually represent the five-number summary of a data set with respect to locality, skewness, and spread.
Additionally, the five-number summary of any box plot (box and whisker plot) include the following:
- Minimum
- First quartile
- Median
- Third quartile
- Maximum
By critically observing the box plot (box and whisker plot) which represent the math scores of students in in two different classes, we can reasonably and logically deduce the following median scores;
Median score of class A = 80
Median score of class B = 75
Therefore, a median score of 80 in Class A is greater than the median score of 75 in Class B.
Read more on box plots here: brainly.com/question/14277132
#SPJ1