Answer:
Why are synovial joints freely movable?
Diarthroses are freely movable articulations. ... The bones of a synovial joint are covered by a layer of hyaline cartilage that lines the epiphyses of joint ends of bone with a smooth, slippery surface that does not bind them together. This articular cartilage functions to absorb shock and reduce friction during movement.
Explanation:
please give me brainly got my answer from G00GLE so of course its correct hope i helped!!!
Some of those lysosomes contain secretions that will help the immune cells destroy foreign pathogens.
Hope that helped you.
Your answers are going to be: Will succeed, Will reevaluate, and Will create.
Reason: Had is past tense and Has is present tense. Will is the only word that indicates that the actions <em>will be done</em> in the future instead of having already <em>been done.</em>
Answer:
The CFTR behaves like a channel for chlorine. Its dysfunction affects both the transport of this ion and other ions and the transport of water, which causes a thickening of secretions, an alteration of mucociliary transport and local defenses, facilitating bacterial colonization and promoting the release of pro-inflammatory mediators in the airway
Explanation:
CFTR is a protein expressed in the epithelial cells of the respiratory system, pancreas, bile ducts, sweat glands and genitourinary system. It is made up of a single chain made up of 1,480 amino acids. It contains 12 hydrophobic regions embedded in the lipid membrane and acts as a channel for chlorine.The highest levels of expression of the CFTR protein are found in serous cells of the submucosal glands of the proximal airway. In them, Cl- is released to the outside. In addition, there are channels for Na +, through which this ion is also secreted in the same direction. These movements cause the displacement of water and also of mucins, originating in the submucosal glands, allowing their presence on the surface of the airway. For all this to occur normally, a basolateral Na + - K + - ATPase cotransporter must function, another basolateral cotransporter formed by Na +, K + and 2 Cl-, which allows the latter to enter the cell, and an apical CFTR channel through which it exits the Cl- of the cell towards the acinar lumen. Na + leaves the cell following Cl- by a paracellular pathway accompanied by water. When CFTR malfunctions, Cl- does not exit through this channel and this implies a decrease in Na + and water in the canalicular lumen, with the consequent thickening of secretions.