In a multi-paragraph essay, explain how the activity of individual neurons enables you to perform a simple action like answering
your phone. Be sure to describe the main parts of a neuron, explain the unique function of each part, and describe how neurons use electrochemical signals for neurotransmission. Include details from class materials, readings, and research on the nervous system to support your discussion.
There are two systems in the human body that are responsible for the coordination between the functions of different systems to achieve the unity of the living organism's body. These two systems are the nervous system and the endocrine system. The action of the nervous system is fast and takes a short time, while the action of the endocrine system is slow and takes a long time.
The functional unit of the nervous system is the nerve cell or the neuron. The neuron consists of a cell body and the axon. The cell body starts with the dendrites that receive the messages or the impulses from other neurons or from different sense organs or receptors. These impulses are then transmitted through the cell body. The cell body contains a nucleus and different organelles which help the nerve cell to perform its functions. The nerve impulse is then transmitted to the axon.
The axon is an extension from the cell body. There are some cells called Schwan cells that secrete a myelin sheath to insulate the axon from the surrounding medium. The insulated axons have more ability to conduct the impulses than non-insulated axons. The axon ends with the terminal arborizations. The terminal arborizations of a nerve cell connect to the dendrites of the next cell or to the afferent organ. The gaps between the dendrites and the terminal arborizations are called the synapses.
The nerve impulse is an electrochemical phenomenon i.e. an electrical phenomenon with a chemical nature. The membrane of the axon acts as a barrier between an outside positively charged medium and an inside negatively charged medium. This makes a potential difference of -70mV. This state is called the resting potential. When the membrane is subjected to a stimulus, the positive charges enter to inside and the negative charges exit to the outside. The potential difference now becomes +40mV. This state is called the depolarization state. The point of stimulation acts as a new stimulus for the next point and so on. The membrane sooner gains its permeability again and the positive charges return to the outside and the negative charges to inside. This state is called repolarization.
The nerve impulse reaches the synapse. There are some neurotransmitters that are excited by the nerve impulse coming and carry the message across the membrane. Some receptors receive theses neurotransmitters on the dendrites of the next neuron. These receptors act as a stimulus for the new cell.
Answer: One advantage is, well, the water. There’s plenty of it and it’s all around. Therefore, most aquatic plants do not need adaptations for absorbing, transporting, and conserving water. They can save energy and matter by not growing extensive root systems, vascular tissues, or thick cuticles on leaves. Support is also less of a problem because of the buoyancy of water. As a result, adaptations such as strong woody stems and deep anchoring roots are not necessary for most aquatic plants.