Oh ya the correct answer for this is B I think because structure B
Ok so use trigonometry to work out the vertical component of velocity.
sin(25) =opp/hyp
rearrange to:
30*sin(25) which equals 12.67ms^-1
now use SUVAT to get the time of flight from the vertical component,
V=U+at
Where V is velocity, U is the initial velocity, a is acceleration due to gravity or g. and t is the time.
rearranges to t= (V+u)/a
plug in some numbers and do some maths and we get 2.583s
this is the total air time of the golf ball.
now we can use Pythagoras to get the horizontal component of velocity.
30^2-12.67^2= 739.29
sqrt739.29 = 27.19ms^-1
and finally speed = distance/time
so--- 27.19ms^-1*2.583s= 70.24m
The ball makes it to the green, and the air time is 2.58s
C. Rotations per second
Or normally we'd use Radians Per second
_Brainliest if helped!!
Answer:
a. 4
Explanation:
Hi there!
The equation of kinetic energy (KE) is the following:
KE = 1/2 · m · v²
Where:
m = mass of the car.
v = speed of the car.
Let´s see how would be the equation if the velocity is doubled (2 · v)
KE2 = 1/2 · m · (2 · v)²
Distributing the exponent:
KE2 = 1/2 · m · 2² · v²
KE2 = 1/2 · m · 4 · v²
KE2 = 4 (1/2 · m · v²)
KE2 = 4KE
Doubling the velocity increased the kinetic energy by 4.
True is The answer would be I just did this