1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blsea [12.9K]
3 years ago
15

Out of 32 students in a class, 5 said they ride their bikes to school. based on these results,how many of 800 students in the sc

hool ride threr bikes to school?
Mathematics
1 answer:
Colt1911 [192]3 years ago
6 0
Do a proportion.
5/32= x/800
Cross multiply and divide
800 x 5= 4,000
4,000 divided by 32= 125
So answer is 125 students
You might be interested in
Help Please Will Give Brainliest
il63 [147K]
31 I think I’m not sure may be wrong
7 0
3 years ago
Read 2 more answers
Find the median of the following data:
Nezavi [6.7K]

Answer:

c is the answer

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
An equation with a graph that is a straight line is called
Alinara [238K]
The answer is called a linear equation :))
7 0
2 years ago
Square of a standard normal: Warmup 1.0 point possible (graded, results hidden) What is the mean ????[????2] and variance ??????
LenaWriter [7]

Answer:

E[X^2]= \frac{2!}{2^1 1!}= 1

Var(X^2)= 3-(1)^2 =2

Step-by-step explanation:

For this case we can use the moment generating function for the normal model given by:

\phi(t) = E[e^{tX}]

And this function is very useful when the distribution analyzed have exponentials and we can write the generating moment function can be write like this:

\phi(t) = C \int_{R} e^{tx} e^{-\frac{x^2}{2}} dx = C \int_R e^{-\frac{x^2}{2} +tx} dx = e^{\frac{t^2}{2}} C \int_R e^{-\frac{(x-t)^2}{2}}dx

And we have that the moment generating function can be write like this:

\phi(t) = e^{\frac{t^2}{2}

And we can write this as an infinite series like this:

\phi(t)= 1 +(\frac{t^2}{2})+\frac{1}{2} (\frac{t^2}{2})^2 +....+\frac{1}{k!}(\frac{t^2}{2})^k+ ...

And since this series converges absolutely for all the possible values of tX as converges the series e^2, we can use this to write this expression:

E[e^{tX}]= E[1+ tX +\frac{1}{2} (tX)^2 +....+\frac{1}{n!}(tX)^n +....]

E[e^{tX}]= 1+ E[X]t +\frac{1}{2}E[X^2]t^2 +....+\frac{1}{n1}E[X^n] t^n+...

and we can use the property that the convergent power series can be equal only if they are equal term by term and then we have:

\frac{1}{(2k)!} E[X^{2k}] t^{2k}=\frac{1}{k!} (\frac{t^2}{2})^k =\frac{1}{2^k k!} t^{2k}

And then we have this:

E[X^{2k}]=\frac{(2k)!}{2^k k!}, k=0,1,2,...

And then we can find the E[X^2]

E[X^2]= \frac{2!}{2^1 1!}= 1

And we can find the variance like this :

Var(X^2) = E[X^4]-[E(X^2)]^2

And first we find:

E[X^4]= \frac{4!}{2^2 2!}= 3

And then the variance is given by:

Var(X^2)= 3-(1)^2 =2

7 0
3 years ago
Find an integer $x$ such that $\frac{2}{3} < \frac{x}{5} < \frac{6}{7}$.
alexandr1967 [171]

Answer:

4

Step-by-step explanation:

It's AoPS question

5 0
2 years ago
Read 2 more answers
Other questions:
  • Which angle is an exterior angle of the triangle?
    10·2 answers
  • Last month, a company had receipts totaling $3,700. The company had overhead costs of $444. What is the rate of overhead? A. 11%
    8·1 answer
  • A company packs boxes at a constant rate of 3/4 of a box every of a box every
    6·1 answer
  • Solve for X. pls help asap
    8·1 answer
  • Need help with 9-10 , please !!!!!!
    5·1 answer
  • What is 1/4 + 1/2)6:):$:6:!/&!/ zysvbshztshys
    14·2 answers
  • The dance committee consisted of 8 students. The committee will select three officers at random. What is the probability that Ma
    7·1 answer
  • What is the difference between a terminating decimal and a repeating decimal?​
    6·1 answer
  • Please help! Will give brainliest and 10 points!
    13·1 answer
  • A snail moves at a speed of 3.484 inches per minute. If the snail keeps moving at this rate, about how
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!