Answer: 912
===================================
Work Shown:
The starting term is a1 = 3. The common difference is d = 5 (since we add 5 to each term to get the next term). The nth term formula is
an = a1+d(n-1)
an = 3+5(n-1)
an = 3+5n-5
an = 5n-2
Plug n = 19 into the formula to find the 19th term
an = 5n-2
a19 = 5*19-2
a19 = 95-2
a19 = 93
Add the first and nineteenth terms (a1 = 3 and a19 = 93) to get a1+a19 = 3+93 = 96
Multiply this by n/2 = 19/2 = 9.5 to get the final answer
96*9.5 = 912
I used the formula
Sn = (n/2)*(a1 + an)
where you add the first term (a1) to the nth term (an), then multiply by n/2
-----------------
As a check, here are the 19 terms listed out and added up. We get 912 like expected.
3+8+13+18 +23+28+33+38 +43+48+53+58 +63+68+73+78 +83+88+93 = 912
There are 19 values being added up in that equation above. I used spaces to help group the values (groups of four; except the last group which is 3 values) so it's a bit more readable.
Answer:
1,716
Step-by-step explanation:
I just took the quiz.
Nvm disregard or delete this... wrong answer
<h3>Answer: A. 5/12, 25/12</h3>
============================
Work Shown:
12*sin(2pi/5*x)+10 = 16
12*sin(2pi/5*x) = 16-10
12*sin(2pi/5*x) = 6
sin(2pi/5*x) = 6/12
sin(2pi/5*x) = 0.5
2pi/5*x = arcsin(0.5)
2pi/5*x = pi/6+2pi*n or 2pi/5*x = 5pi/6+2pi*n
2/5*x = 1/6+2*n or 2/5*x = 5/6+2*n
x = (5/2)*(1/6+2*n) or x = (5/2)*(5/6+2*n)
x = 5/12+5n or x = 25/12+5n
these equations form the set of all solutions. The n is any integer.
--------
The two smallest positive solutions occur when n = 0, so,
x = 5/12+5n or x = 25/12+5n
x = 5/12+5*0 or x = 25/12+5*0
x = 5/12 or x = 25/12
--------
Plugging either x value into the expression 12*sin(2pi/5*x)+10 should yield 16, which would confirm the two answers.