1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
3 years ago
9

Anyone that can help me with this?

Mathematics
2 answers:
Flauer [41]3 years ago
8 0
Okay. 10×5=50cm^2 is the area of the rectangle
The height of the triangle is (18-10)=8cm
So (8×5)÷2=20cm^2
50+20=70cm^2 is the area of the composite shape
Galina-37 [17]3 years ago
8 0
The answer is b. I hoped it helped
You might be interested in
A play runs for five evenings. The table shows the number of tickets sold and the amount of money collected each evening.
elixir [45]
$12.50 :) Give Brainliest
3 0
2 years ago
Help please, I don’t understand this question.
Hatshy [7]

Answer:

all you have to do is find x and then what ever you get for x plug it back in where the y is to find the y value

4 0
3 years ago
Simplify 6^7/6^5 in index form
Oksanka [162]

Answer:

6²

Step-by-step explanation:

Using the rule of exponents

\frac{a^{m} }{a^{n} } ⇔ a^{(m-n)} , then

\frac{6^{7} }{6^{5} }

= 6^{(7-5)}

= 6²

6 0
2 years ago
Read 2 more answers
What is the sum of the 9th square number and the 3rd cube number?
Lesechka [4]
The sum of the 9th square number and 3rd cube number is 108
7 0
2 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Other questions:
  • If the x-intercept of a line is -3 and the y-intercept of this line is 8, what is the slope of this line?
    5·1 answer
  • The maintenance bill for the entire shopping center of 180,000 square feet is $45,000 for the quarter. What proportional share d
    10·1 answer
  • Lamar and Mimi are in the same math class. The table shows their scores on 6 math tests.
    14·1 answer
  • Solve the system by substitution. <br>x = – 4y + 6 <br>2x + 9y = 16​
    6·1 answer
  • A sweater costs $36. If the sweater is 35% off how much is the total?
    12·2 answers
  • Karina needs a total of $45 to buy her mother a birthday present. She has saved 20% of the amount so far. How much has she saved
    10·1 answer
  • . A factory produces 32 tables in an 8-hour day. Calculate how many
    15·1 answer
  • The function y=-16x^2+16x+32 represents the height in feet of a firework x seconds after it is launched
    13·1 answer
  • Two supplementary angles are in a ration of 3 7 find the measure of each angle
    9·2 answers
  • If a sample of 40 cars is selected, estimate the number of cars<br> traveling faster than 70 mph.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!