NOT NECESSARILY would a triangle be equilateral if one of its angles is 60 degrees. To be an equilateral triangle (a triangle in which all 3 sides have the same length), all 3 angles of the triangle would have to be 60°-angles; however, the triangle could be a 30°-60°-90° right triangle in which the side opposite the 30 degree angle is one-half as long as the hypotenuse, and the length of the side opposite the 60 degree angle is √3/2 as long as the hypotenuse. Another of possibly many examples would be a triangle with angles of 60°, 40°, and 80° which has opposite sides of lengths 2, 1.4845 (rounded to 4 decimal places), and 2.2743 (rounded to 4 decimal places), respectively, the last two of which were determined by using the Law of Sines: "In any triangle ABC, having sides of length a, b, and c, the following relationships are true: a/sin A = b/sin B = c/sin C."¹
Answer:
The Team started at 1st and 10 but finished at 4th and 22, so they lost 12 yards in 3 plays.
Step-by-step explanation:
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Midpoint Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (2, 9)
Point (8, 1)
<u>Step 2: Identify</u>
(2, 9) → x₁ = 2, y₁ = 9
(8, 1) → x₂ = 8, y₂ = 1
<u>Step 3: Find Midpoint</u>
Simply plug in your coordinates into the midpoint formula to find midpoint
- Substitute in points [Midpoint Formula]:

- [Fractions] Add:

- [Fractions] Divide:

Answer:
104 14/15
Step-by-step explanation:
15 goes into 1574 104 times and you have 14 remaining so you have 104 with a remaining fraction of 14/15.
Heron's formula is named after Hero of Alexendria, a Greek Engineer and Mathematician in 10 - 70 AD. You can use this formula to find the area of a triangle using the 3 side lengths.
Therefore, you do not have to rely on the formula for area that uses base and height. The picture below illustrates the general fro mu la where S represents the semi-perimeter of the triangle ,