Answer:
The probability of rolling a number that is even and a multiple of 3 is 
Step-by-step explanation:
The total possible  outcomes of cube = { 1, 2, 3 , 4 , 5 , 6}
Now, let E: Event of getting an even number and a multiple of 3
So, out of all the outcomes, {6) is the ONLY possible favorable outcome.

or, 
Hence, the probability of rolling a number that is even and a multiple of 3 is 
 
        
             
        
        
        
to put them together and add them.
 
        
                    
             
        
        
        
Answer:
<em>Here </em><em>it </em><em>is </em><em>a </em><em>parallelogram </em><em>so </em><em>opposite </em><em>angles </em><em>of </em><em>parallelogram </em><em>are </em><em>equal</em><em>. </em>
Step-by-step explanation:
<em>so</em>
<em>8x </em><em>+</em><em>1</em><em>7</em><em> </em><em>=</em><em> </em><em>12x </em><em>-</em><em> </em><em>3</em><em>9</em>
<em>1</em><em>7</em><em>+</em><em>3</em><em>9</em><em> </em><em>=</em><em> </em><em>12x </em><em> </em><em>-</em><em> </em><em>8</em><em> </em><em>x</em>
<em>4x </em><em> </em><em>=</em><em> </em><em>5</em><em>6</em>
<em>Therefore </em><em>x </em><em>=</em><em> </em><em>1</em><em>4</em>
 
        
             
        
        
        
Answer:
P ( 37 < x < 41) = P(-0.5 < Z < 1.5) =  0.6247
Step-by-step explanation:
We know mean u = 38  standard dev. s = 2
We want  P ( 37 < x < 41)
so
P( (37 - 38) / 2 <  Z) =  P(-0.5 < Z)  
P( Z <  (41 - 38)/2 ) =  P( Z < 1.5)
Find  P(Z < -0.5) = 0.3085
Find P(Z > 1.5) = 0.0668
so  P(-0.5 < Z < 1.5) =  1  - P(Z < -0.5) - P(Z > 1.5)
P(-0.5 < Z < 1.5) =  1  - 0.3085 -  0.0668
P(-0.5 < Z < 1.5) =  0.6247
P ( 37 < x < 41) = P(-0.5 < Z < 1.5) =  0.6247
 
        
             
        
        
        
Answer:
The set of all real values except 7
Step-by-step explanation:
We are given that,
Domain of the function f(x) is 'the set of all real values except 7'.
Domain of the function g(x) is 'the set of all real values except -3'.
It is required to find the domain of 
.
Now, we know that,
<em>The composition  
 of functions 
 and 
 will be defined where the function 
 is defined.</em>
Since, the domain of f(x) is 'the set of all real values except 7'.
Thus, the domain of 
 is also 'the set of all real values except 7'.