After rewriting all sets of data from smaller to greater, I found that the last series is the one that is represented by the plot box:
79,86,88,88,92,98,100,106,115,136
Why? Because The median is 95 (like the box)
because the outliers are > 115 (up to 136)
because their is no outlier on the left by the mini value of 79
I think it’s even because if you flip one of them they will equal up on the same line. it’s basically the inverse of the other one so it’s even
Answer:
<em><u>First</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>top</u></em><em><u>:</u></em>
5. 3. 10
<em><u>Second</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>middle</u></em><em><u>:</u></em>
9. 7. 2
<em><u>Third</u></em><em><u> </u></em><em><u>Column</u></em><em><u> </u></em><em><u>bottom</u></em><em><u>:</u></em>
4. 8. 6
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>grid</u></em><em><u> </u></em><em><u>would</u></em><em><u> </u></em><em><u>be</u></em><em><u>,</u></em>
5. 3. 10
9. 7. 2
4. 8. 6
Note that if

, then

, and so we can collapse the system of ODEs into a linear ODE:


which is a pretty standard linear ODE with constant coefficients. We have characteristic equation

so that the characteristic solution is

Now let's suppose the particular solution is

. Then

and so

Thus the general solution for

is

and you can find the solution

by simply differentiating

.