1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sholpan [36]
3 years ago
13

G technical mathematics with calculus volume 10 find the derivative of the function y = sqrt(x^2+1) using limits definition

Mathematics
1 answer:
Sholpan [36]3 years ago
5 0
By definition of the derivative,

\displaystyle\frac{\mathrm dy}{\mathrm dx}=\lim_{h\to0}\frac{y(x+h)-y(x)}h

\displaystyle\frac{\mathrm dy}{\mathrm dx}=\lim_{h\to0}\frac{\sqrt{(x+h)^2+1}-\sqrt{x^2+1}}h=\lim_{h\to0}\frac{\sqrt{x^2+2xh+h^2+1}-\sqrt{x^2+1}}h

Multiply the numerator and denominator by the conjugate of the numerator:

\dfrac{\sqrt{x^2+2xh+h^2+1}-\sqrt{x^2+1}}h\cdot\dfrac{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}=\dfrac{(x^2+2xh+h^2+1)-(x^2+1)}{h\left(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\right)}

Now

\displaystyle\frac{\mathrm dy}{\mathrm dx}=\lim_{h\to0}\frac{(x^2+2xh+h^2+1)-(x^2+1)}{h\left(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\right)}
=\displaystyle\lim_{h\to0}\frac{2xh+h^2}{h\left(\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}\right)}
=\displaystyle\lim_{h\to0}\frac{2x+h}{\sqrt{x^2+2xh+h^2+1}+\sqrt{x^2+1}}

As h\to0, in the numerator we have 2x+h\to2x; in the denominator we have \sqrt{x^2+2xh+h^2+1}\to\sqrt{x^2+1}. So the limit is

\dfrac{2x}{2\sqrt{x^2+1}}=\dfrac x{\sqrt{x^2+1}}
You might be interested in
Please help :(( Simplify.
Luden [163]

<em>so</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>6</em><em>a</em><em>^</em><em>2</em><em>0</em><em>b</em><em>^</em><em>2</em><em>4</em>

<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>

<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em>

<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>

<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>

6 0
2 years ago
Find angel v (use pic)
Setler [38]

Answer: 63 degrees.

Step-by-step explanation:

7x + 4 +5x+3+2x+5=180 degrees

14x+12=180 -12 Degrees

14x / 14 = .  168 /14

x=12

5(12) +3

63

   

3 0
3 years ago
13+(14+x)=. please answer
Mumz [18]
27+x simplify the expression
5 0
3 years ago
Find the derivative of <br> |x|/(x-1)
ki77a [65]
\bf \cfrac{|x|}{x-1}\iff \cfrac{\sqrt{x^2}}{x-1}\iff \cfrac{(x^2)^{\frac{1}{2}}}{x-1}&#10;\\\\\\&#10;\textit{using the quotient rule}&#10;\\\\\\&#10;\cfrac{dy}{dx}=\cfrac{\frac{1}{2}(x^2)^{-\frac{1}{2}}\cdot 2x(x-1)-(x^2)^{\frac{1}{2}}\cdot 1}{(x-1)^2}

\bf \cfrac{dy}{dx}=\cfrac{\frac{x(x-1)-(x^2)^{\frac{1}{2}}}{(x^2)^{\frac{1}{2}}}}{(x-1)^2}\implies \cfrac{dy}{dx}=\cfrac{x(x-1)-(x^2)^{\frac{1}{2}}}{(x^2)^{\frac{1}{2}}(x-1)^2}&#10;\\\\\\\cfrac{dy}{dx}=\cfrac{x(x-1)-|x|}{|x|(x-1)^2}
4 0
3 years ago
7 ft<br> 8 ft<br> 8 ft<br> 5 ft<br> 5 ft<br> Find the total surface area of the prism
Anestetic [448]

Answer:

look up surface area calculator

Step-by-step explanation:

4 0
2 years ago
Other questions:
  • Solve the system of equations is given below 2x+3y=18 x+7y=31
    9·1 answer
  • What is the constant of proportionality in the equation y=5/4 x
    5·1 answer
  • If a= 4, b=6, and c=2, evaluate the expression ab-c
    12·1 answer
  • Five hundred sixty students will be divided as evenly as possible between 34 buses. how many students will ride each bus?
    11·1 answer
  • An amount of $25,000 is borrowed for 9 years at 9% interest, compounded annually. If the loan is paid in full at the end of that
    10·1 answer
  • What is 0.727272 as a simplified fraction?
    8·1 answer
  • If f(x)=5x + 2 and g(x)=1/2x+4 , find g(f(12))
    7·1 answer
  • Let p(n) be the number of primes less than n. What is p(50)
    7·1 answer
  • Find measure of Arc BC
    9·1 answer
  • 14) Chili's restaurant has 70 tables in the dining area. On a recent evening, there were reservations for 1/10 of the tables. Ho
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!