Answer:
1. 6
2. 1
3. 5
Step-by-step explanation:
You can find the GCF by finding the prime factorization of the numbers.
1. 12 and 18
12= 2*2*3
18=2*3*3
They both have 2 and 3 in common, so their GCF is 2*3 or 6.
2. 9 and 35
9= 3*3
35= 5*7
Although they don't have any prime numbers in common, all numbers have the factor one in common, so they're relatively prime but their GCF is 1.
3. 15 and 25
15 = 3*5
25= 5*5
They have one 5 in common so their GCF is 5.
Answer: f(-2) = 8
Step-by-step explanation: On the graph there’s a point (-2,8), so f(-2), which just means -2’s y value on the graph, is 8.
Using the principle of binomial probability, the probability of having exactly two black cards is 0.3125
- <em>Probability</em><em> </em><em>of</em><em> </em><em>having</em><em> </em><em>a</em><em> </em><em>black</em><em> </em><em>card</em><em> </em><em>=</em><em> </em><em>26</em><em>/</em><em>52</em><em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em><em> </em>
<u>Using the binomial probability relation</u> :
- P(x = x) = nCx * p^x * q^(n-x)
- <em>p</em><em> </em><em>=</em><em> </em><em>probability</em><em> </em><em>of</em><em> </em><em>success</em><em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em><em> </em><em>=</em><em> </em><em>0</em><em>.</em><em>5</em>
- <em>Number of</em><em> </em><em>picks</em><em>,</em><em> </em><em>n</em><em> </em><em>=</em><em> </em><em>5</em>
- <em>q</em><em> </em><em>=</em><em> </em><em>1</em><em> </em><em>-</em><em> </em><em>p</em><em> </em><em>=</em><em> </em><em>0.5</em><em> </em>
- <em>x</em><em> </em><em>=</em><em> </em><em>2</em><em> </em>
Hence,
P(x = 2) = 5C2 × 0.5² × 0.5³
P(x = 2) = 10 × 0.25 × 0.125
P(x = 2) = 0.3125
Hence. Probability of having exactly 2 black cards is 0.3125
Learn more : brainly.com/question/12474772
here it is :)
do check properly, I have given step by step instructions:)
do give feedback on my answer, would appreciate it!
Answer:
Option B. 4
Step-by-step explanation:
The given expression is x² + 4x + -----
We have to find a number which can be added in the expression to make it a perfect square trinomial.
x² + 2(2x) + 2²
= (x + 2)²
Therefore, if we add 4 in the given expression it becomes a perfect trinomial.
Option B is the correct option.