For this, we use simultaneous equations. Let George's page be g, Charlie's be c and Bill's page be b.
First, <span>George's page contains twice as many type words as Bill's.
Thus, g = 2b.
</span><span>Second, Bill's page contains 50 fewer words than Charlie's page.
Thus, b = c - 50.
</span>If each person can type 60 words per minute, after one minute (i.e. when 60 more words have been typed) <span>the difference between twice the number of words on bills page and the number of words on Charlie's page is 210.
We can express that as 2b - c = 210.
Now we need to find b, since it represents Bill's page.
We can substitute b for (c - 50) since b = c - 50, into the equation 2b - c = 210. This makes it 2(c - 50) - c = 210.
We can expand this to 2c - 100 - c = 210.
We can simplify this to c - 100 = 210.
Add 100 to both sides.
c - 100 + 100 = 210 + 100
Then simplify: c = 210 + 100 = 310.
Now that we know c, we can use the first equation to find b.
b = c - 50 = 310 - 50 = 260.
260 is your answer. I don't know where George comes into it. Maybe it's a red herring!</span>
Answer:
The maximum variance is 250.
Step-by-step explanation:
Consider the provided function.


Differentiate the above function as shown:

The double derivative of the provided function is:

To find maximum variance set first derivative equal to 0.


The double derivative of the function at
is less than 0.
Therefore,
is a point of maximum.
Thus the maximum variance is:


Hence, the maximum variance is 250.
Answer:
x= - 2
Step-by-step explanation:
hello :
note : the equation of the axis symmetry for the parabola : y =ax²+bx+c
when : a≠ 0 is : x=- b/2a
in this exercice : a=1 and b=10
so : x= -10/2 = -5
Denoms are 12 and 18
12=2*2*3
18=2*3*3
lcd=2*2*3*3=36
lcd=36
Answer:
Step-by-step explanation: