Given: Yu, Nailah, and Elena each bought between 7 and 9 yards of ribbon Yu bought 3 pieces of ribbon. Nailah bought 5 pieces of ribbon. Elena bought 6 pieces of ribbon.
To find: Who can buy which ribbon
Solution:
Ribbon Sizes
1 2/3 = 5/3 yard
4/5 yard
3 1/2 = 7/2 Yard
Yu, Nailah, and Elena each bought between 7 and 9 yards of ribbon
Yu bought 3 pieces of ribbon
=> 3 * 5/3 = 5
3 * 4/5 = 2.4
3 * 7/2 = 10.5
Nailah bought 5 pieces of ribbon
=> 5 * 5/3 = 8.33
5 * 4/5 = 4
5 * 7 /2 = 17.5
Elena bought 6 pieces of ribbon
=> 6 * 5/3 = 10
6 * 4/5 = 4.8
6 * 7 /2 = 21
Only value between 7 & 9 is 5 * 5/3 = 8.33
hence Nailah only can buy 1 2/3 = 5/3 yard ribbon
or there is some mistake in the data
Step-by-step explanation :
Dado que Conner y Jana se multiplican (3568)(39610). El trabajo de Conner El trabajo de Jana (3568)(39610) = 35 + 968 + 10 = 314618 (3568)(39610) = 35⋅968⋅10 = 345680 ¿Es correcto cualquiera de ellos?
Jana y Conner están multiplicando dos números dados. Así que la pregunta es
3568 x 39610
0000
3568x
21408xx
32112xxx
10704xxxx
--------------------------------------
141328480
Así que la respuesta correcta es 141328480.
También los números se pueden agrupar como
3568 = 3000 + 500 + 60 + 8
39610 = 30000 + 9000 + 600 + 10
Después de agrupar multiplicando ambos términos obtenemos la respuesta requerida.
Así que ninguno de los dos tiene la respuesta correcta.
Answer:
36
Step-by-step explanation:
1^3 + 2^3 + 3^3= 1+8+27
9+27= 36
It looks like the integral is

where <em>C</em> is the circle of radius 2 centered at the origin.
You can compute the line integral directly by parameterizing <em>C</em>. Let <em>x</em> = 2 cos(<em>t</em> ) and <em>y</em> = 2 sin(<em>t</em> ), with 0 ≤ <em>t</em> ≤ 2<em>π</em>. Then

Another way to do this is by applying Green's theorem. The integrand doesn't have any singularities on <em>C</em> nor in the region bounded by <em>C</em>, so

where <em>D</em> is the interior of <em>C</em>, i.e. the disk with radius 2 centered at the origin. But this integral is simply -2 times the area of the disk, so we get the same result:
.