Answer:
According to the hormone diagram of the menstrual cycle, the woman is not pregnant due to the behavior of progesterone and estrogens, whose levels do not increase, in addition to the absence of human chorionic gonadotropin.
Explanation:
The graph shows the behavior of hormones during a woman's menstrual cycle in the absence of pregnancy.
During a woman's normal cycle, estrogen, luteinizing hormone (LH) and follicle stimulating hormone (FSH) tend to increase prior to ovulation, reach their peak values at ovulation, and then decline, as shown in the graph. Progesterone, on the other hand, increases after ovulation and decreases if the woman does not become pregnant.
In the case of a pregnant woman:
- <u>Estrogens</u> continue to increase after ovulation, produced by the ovaries and placenta.
- <u>Progesterone</u> also increases its levels, as it is a hormone produced by the ovaries and placenta.
- <u>Hormone human chorionic gonadotropin</u> (HCG) appears and increases during pregnancy, due to the secretory activity of the placenta.
<em><u>The diagram represents the normal cycle of a woman who is not pregnant</u></em>.
In animals, a gene is inserted into an embryo, modifying the genome to manufacture the product of this new gene. In plants, a gene is injected into a single cell that is grown from a seed into a plant. This plant expresses the new gene in all its cells. The difference between GM and selective breeding.
I think is c i hope i am right if not that k k
Just let me know k
Answer:
The correct answer would be - D. the distribution of alleles in a population.
Explanation:
Allele frequency in population genetics is the term used to provide the amount of the different alleles in particular loci. In other words, it is the distribution of alleles in a population.
The term allele frequency refers to the fraction of the copies of the gene of the alleles in a known population. It can be calculated by the number of allele present of interest divided by total number of alleles in a population.