There are two ways you could go about solving this.
You could divide the length of the base (6mm) by 2 and use that to find the area or you could find the area of the whole triangle using 6mm and divide that by 2.
I will use the first method I described:
base = 6/2
base = 3 mm
height = 5.2 mm
area = bh/2
area = (3 * 5.2)/2
area = 7.8 square mm
(don't forget your units)
Using the other method would look like this:
area = bh/2
b = 6
h = 5.2
area = (6 * 5.2)/2
area = 15.6 square mm
area/2 = 7.8 square mm
As you can see either method yields the same result.
Hope this helped.
Cheers and good luck,
Brian
Answer:
26.57°
Step-by-step explanation:
![2y = x + 1 \\ y = \frac{1}{2} x + 1 \\ equating \: it \: with \\ y = mx + b \\ slope \: m = \frac{1}{2} \\ \because \: \tan \theta = m \\ \therefore \: \tan \theta = \frac{1}{2} = 0.5 \\ \therefore \: \theta = {tan}^{ - 1} (0.5) \\\therefore \: \theta = {tan}^{ - 1} ( \tan \: 26.565051177 \degree) \: \\ \\ \huge \red{ \boxed{\therefore \: \theta = 26.57 \degree}}](https://tex.z-dn.net/?f=2y%20%3D%20x%20%2B%201%20%5C%5C%20y%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20x%20%2B%201%20%5C%5C%20equating%20%5C%3A%20it%20%5C%3A%20with%20%5C%5C%20y%20%3D%20mx%20%2B%20b%20%5C%5C%20slope%20%5C%3A%20m%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5C%5C%20%20%5Cbecause%20%5C%3A%20%20%5Ctan%20%5Ctheta%20%3D%20m%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20%5Ctan%20%5Ctheta%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20%3D%200.5%20%5C%5C%20%5Ctherefore%20%5C%3A%20%20%5Ctheta%20%3D%20%20%7Btan%7D%5E%7B%20-%201%7D%20%280.5%29%20%5C%5C%5Ctherefore%20%5C%3A%20%20%20%5Ctheta%20%3D%20%20%7Btan%7D%5E%7B%20-%201%7D%20%28%20%5Ctan%20%5C%3A%2026.565051177%20%5Cdegree%29%20%20%5C%3A%20%20%5C%5C%20%20%5C%5C%20%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%5Ctherefore%20%5C%3A%20%20%20%5Ctheta%20%3D%2026.57%20%5Cdegree%7D%7D)
I think 3 but u can try other ones
<span>Marcus : 40$
Joseph, twice as much as Marcus : 40x2 : 80$
Jenna, half as much as Marcus : 40/2 : 20$
Sam, 1/3 as much as Marcus : 1/3 x 40 : (40x1)/3 : 13.33
In the order from least to greatest :
Sam - Jenna - Marcus - Joseph</span>
Não, não podemos fazer um triângulo com os comprimentos dos lados de 2 cm, 3 cm e 10 cm. Isso ocorre porque a soma de 2+3 < 10. (in english: No, we cannot make a triangle with the side lengths of measurement 2 cm, 3 cm, and 10 cm. This is because sum of 2+3 < 10).
<h3>What is triangle inequality theorem?</h3>
Triangle inequality theorem of a triangle says that the sum of any of the two sides of a triangle is always greater than the third side.
Suppose a, b and c are the three sides of a triangle. Thus according to this theorem,
![(a+b) > c\\(b+c) > a\\(c+a) > b](https://tex.z-dn.net/?f=%28a%2Bb%29%20%3E%20c%5C%5C%28b%2Bc%29%20%3E%20a%5C%5C%28c%2Ba%29%20%3E%20b)
Now, for this case, the sides given are:
- a =2 cm,
- b = 3 cm,
- and c = 10 cm
But we see that:
a+ b = 5 cm which is < c which is of 10 cm.
Thus, these lengths don't satisfy the triangle inequality theorem, and therefore, cannot be sides of any triangle.
Learn more about triangle inequality theorem here:
brainly.com/question/342881
#SPJ1