Answer:
Rider 1 does one round in 15 min, and will complete another in each consecutive multiple of 15 min
Rider 2 does one round in 18 min, and will complete another in each consecutive multiple of 18 min
Assuming that they start together, they will complete another round together in a time that is both multiples of 15min and 18 min.
Then we need to find the smallest common multiple between 15 and 18.
To smallest common multiple between two numbers, a and b, is equal to:
a*b/(greatest common factor between a and b).
Now, the greatest common factor between 15 and 18 can be found if we write those numbers as a product of prime numbers, such as:
15 = 3*5
18 = 2*3*3
The greatest common factor is 3.
Then the smallest common multiple will be:
(15*18)/3 = 90
This means that after 90 mins, they will meet again at the starting place.
Answer:
19
Step-by-step explanation:
The triangle is an isosceles and so angle SRT and angle STR are equal
also:
Angle SRT and angle STU are supplementary so their sum is equal to 180
7x + 2x + 9 = 180 add like terms
9x + 9 = 180 subtract 9 from both sides
9x = 171 divide both sides by 9
x = 19
its odd you're in high school and you're asking this but its 9
Answer:
The quotient of two integers may not always be an integer.
Therefore, I do not agree when a student says that the sum difference, product, and quotient of two are always integers.
Step-by-step explanation:
The student is not largely correct!
The sum, difference, and product of two integers is indeed always an integer.
But, the quotient of two integers may not always be an integer.
- For example, the quotient of integers 4 and 2 will be an integer.
i.e.
4/2 = 2
- But, if we take the quotient of 2 and 3, the result will not be an integer.
i.e.
2/3 = 0.67
Therefore, I do not agree when a student says that the sum difference, product, and quotient of two are always integers.