Answer:
![\boxed{-3xy^{2}\sqrt [3] {2x^{2}}}](https://tex.z-dn.net/?f=%5Cboxed%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D)
Step-by-step explanation:
Your expression is
![\sqrt [3] {-54x^{5}y^{6}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B-54x%5E%7B5%7Dy%5E%7B6%7D%7D)
Here's how I would simplify it.
![\begin{array}{rcll}\sqrt [3] {-54x^{5}y^{6}} & = & \sqrt [3] {(-1)^{3}\times 2 \times 27 \times x^{2} \times x^{3} \times y^{6}} & \text{Factored the cubes}\\& = & \sqrt [3] {(-1)^{3} \times 3^{3}\times x^{3} \times y^{6}\times 2 \times x^{2}} & \text{Grouped the cubes}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcll%7D%5Csqrt%20%5B3%5D%20%7B-54x%5E%7B5%7Dy%5E%7B6%7D%7D%20%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%5Ctimes%202%20%5Ctimes%2027%20%5Ctimes%20x%5E%7B2%7D%20%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%7D%20%26%20%5Ctext%7BFactored%20the%20cubes%7D%5C%5C%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%20%5Ctimes%203%5E%7B3%7D%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%5Ctimes%202%20%5Ctimes%20x%5E%7B2%7D%7D%20%26%20%5Ctext%7BGrouped%20the%20cubes%7D%5C%5C%5Cend%7Barray%7D)
![\begin{array}{rcll}& = & \sqrt [3] {(-1)^{3} \times {3^{3}\times x^{3} \times y^{6}}} \times\sqrt [3] { 2 \times x^{2}} & \text{Separated the cubes}\\&=& \mathbf{-3xy^{2}\sqrt [3] {2x^{2}}} & \text{Took cube roots}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcll%7D%26%20%3D%20%26%20%5Csqrt%20%5B3%5D%20%7B%28-1%29%5E%7B3%7D%20%5Ctimes%20%7B3%5E%7B3%7D%5Ctimes%20x%5E%7B3%7D%20%5Ctimes%20y%5E%7B6%7D%7D%7D%20%5Ctimes%5Csqrt%20%5B3%5D%20%7B%202%20%5Ctimes%20x%5E%7B2%7D%7D%20%26%20%5Ctext%7BSeparated%20the%20cubes%7D%5C%5C%26%3D%26%20%5Cmathbf%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D%20%26%20%5Ctext%7BTook%20cube%20roots%7D%5C%5C%5Cend%7Barray%7D)
![\text{The simplified expression is $\boxed{\mathbf{-3xy^{2}\sqrt [3] {2x^{2}}}}$}](https://tex.z-dn.net/?f=%5Ctext%7BThe%20simplified%20expression%20is%20%24%5Cboxed%7B%5Cmathbf%7B-3xy%5E%7B2%7D%5Csqrt%20%5B3%5D%20%7B2x%5E%7B2%7D%7D%7D%7D%24%7D)
Step-by-step explanation: The cosecant function is graphed in the given figure. we are to find the period of the function.
The period of a function is the distance travelled by the curve of the function in one complete revolution.
We can see that in the given figure, the distance between two consecutive points is given by
Therefore, the period of the cosecant function is
Thus, the correct option is (B) \pi.
Answer:
2B + F + 8
Step-by-step explanation:
Answer:
16 new releases and 22 classic movies.