The Taylor Series expansion of f(x) = sin(x) about a = π i given by

where the c's are contants.
That is
f(x) = c₀ + c₁(x-π) +c (x-π)² + c₃ (x-π)³ + ...,
₂
The first few derivatives of f(x) are
f' = c₁
f'' = 2c₂ = 2! c₂
f''' = 3.2c₃ = 3! c₃
f⁽⁴⁾ = 4.3.2c₄ = 4! c₄
and so on.
The pattern indicates that

The derivatives of f(x) are
f' = cos(x)
f'' = -sin(x)
f''' = -cos(x)
f⁽⁴⁾ = sin(x(
and so on
The pattern indicates that
f⁽ⁿ⁾(x) = cos(x), n=1,5,9, ...,
= -sin(x), n=2,6,10, ...,
= -cos(x), n=3,7,11, ...,
= sin(x), n=4,8,12, ...,
The radius of convergence is |x-π|<1 by the ratio test.
The least common multiple is 66
22x3=66
33x2=66
Company A:
$200 + $2.99(30ft * 50ft) = $4,685
Company B:
30ft x 50 ft = 166.6667 sq yd.
$500 + $19.99(166.6667sq yd) = $3831.667
Company B is the better deal
Answer:
-4x³+x²-5x
Step-by-step explanation:
-4x³+x²-5x